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Pediatric sleep disordered breathing (SDB) is seen in children along 
the entire spectrum of body mass index (BMI). Whether underweight, 
overweight, or within normal BMI limits, when pediatric SDB is present, 
there is abnormal collapsibility of the upper airway leading to abnormal 
breathing during sleep. This abnormal breathing is commonly associated 
with snoring, and severity of the upper airway collapse has been 
polygraphically defined. Importantly, such definitions rely in part on 
the type of recording performed during sleep, the sophistication of the 
sensors used to investigate abnormal breathing, and the experience of the 
interpreter; abnormalities from primary snoring and “nasal flow limitation” 
to complete “obstructive sleep apnea” (OSA) have been defined [1-3].  

Remarkably, studies have shown that independent of the type of abnormal 
breathing during sleep noted on polysomnography (PSG), negative daytime 
consequences of pediatric SDB have been observed that may be sub-classified 
as neuro-behavioral, cardiovascular, and/or inflammatory [4-6]. However, 
not all children with abnormal sleep suffer from each of these consequences. 
Considering the above comorbidities, phenotyping of pediatric SDB patients 
has been suggested, with an overweight/obese subgroup of children, who 
may tend to have more nocturnal desaturation, and possibly cardiovascular 
and metabolic comorbidities; and a normal weight subgroup of children who 
may tend to present with neurobehavioral complaints, including problems 
with focus and concentration, hyperactivity, non-REM sleep parasomnias, 
learning problems, headache, mood disturbances, for example [7-12].
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Abstract

The interaction between oral-facial structural growth and muscle activity starts early in development and continues through childhood. Chronic 
oral breathing is an important clinical marker of orofacial muscle dysfunction, which may be associated with palatal growth restriction, nasal 
obstruction, and/ or a primary disorder of muscular or connective tissue dysfunction. It is easily documented objectively during sleep.

Treatment of pediatric obstructive-sleep-apnea (OSA) and sleep-disordered-breathing (SBD) means restoration of continuous nasal breathing during 
wakefulness and sleep; if nasal breathing is not restored, despite short-term improvements after adenotonsillectomy (T&A), continued use of the oral 
breathing route may be associated with abnormal impacts on airway growth and possibly blunted neuromuscular responsiveness of airway tissues.

Elimination of oral breathing, i.e., restoration of nasal breathing during wake and sleep, may be the only valid end point when treating OSA. Preventive 
measures in at-risk groups, such as premature infants, and usage of myofunctional therapy as part of the treatment of OSA are proposed to be important 
approaches to treat appropriately SDB and its multiple co-morbidities.
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First Line Treatment with Adenotonsillectomy and Decreased in Benefits 

Over Time

Whether overweight or not, often the tonsils and adenoids in children 
with SDB are found to be enlarged. Clinically, it is recognized that 
enlargement of these tissues is often associated with frequent oral 
breathing. Historically, adentonsillectomy (T&A) has been performed to 
treat obstructive sleep apnea in children since the late 1970s [13], though 
it was certainly used before this in the setting of enlarged tonsils and 
adenoids. T&A came to be considered the first-line of therapy for pediatric 
SDB, and earlier studies, usually with short follow-up durations and 
with a variety of endpoints, suggested that T&A was highly successful 
for SDB in children, in both normal weight and overweight subgroups.

Over the years, systematic follow-up studies have revealed that T&A may 
not be as successful as once thought. [14-21] For years, routinepost-
operative PSG recordings were deemed unnecessary and expensive; so 
when subjective clinical report of improvement was observed post operatively, 
no further PSG testing was performed. However, increasingly there have 
been reports indicating that T&A may not be a reliable cure for SDB [16-21]. 
Of particular interest is how SDB fares in children in the long run, whether 
treated or not. Most research on natural history of treated and/or untreated 
pediatric OSA are biased towards the short-term, towards relatively younger 
children, and may not involve objective PSG measures. Reports on very 
long term follow-up (for example, 3 years or greater) of children with SDB, 
after T&A or not, are still rare, but suggest that sleep disordered breathing 
(AHI or symptoms) cannot be expected to remain resolved or significantly 
improved in the longer run [22-25]. The reports that do exist typically involve 
children who have presented again due to appearance of further clinical 
SDB-related symptoms, with OSA detected upon repeat testing. Intriguingly, 
snoring itself, even without hypoxia and frequent arousals, is associated 
with day time cognitive and behavioral morbidity similar to that seen with 
more pronounced nocturnal breathing abnormalities, which may suggest the 
importance of anatomy in the long run. One early article to attract attention 
focused on the orofacial structures as the predisposing factor involved 
in SDB “recurrence” [14]; however, until recently the substantial body of 
knowledge regarding the continuous interaction between normal breathing, 
particularly during sleep, and normal orofacial growth was not integrated into 
the sleep medicine field, despite longstanding and accepted understanding 
of such mechanisms in the dental and orthodontic fields [26-29].

A solid understanding of the factors that influence normal growth 
of the upper airway is critical to providing appropriate, long-sighted 
treatment to children with SDB. Based on important recent findings, it 
appears that complete SDB treatment may mean normalization of nasal 
breathing during sleep. Unfortunately, this outcome – continuous nasal 
breathing during sleep - is almost always ignored in pediatric PSG 
interpretation, even though the data is collected and available to analyze.

At this time, we are aware of only one study has reported systematic 
clinical, psychometric, and PSG follow-up evaluation of prepubertal children 
with SDB, who were enrolled at baseline and followed prospectively. This 
Taiwanese study involved 2 groups of children aged 6 to 12 years; and 4 
to 6 years [25]. After T&A for SDB, follow-up occurred over 3 years, with 
systematic evaluation at 6, 12, 24, and 36 months post-surgically. Results at 
each time point were compared to pre-surgery findings. Independent of age 
group, this study demonstrated retention of about 70% of the initial group.

There was substantial improvement of symptoms and PSG findings at 6 
months post-T&A, with about 50% of children having a normal apnea-
hypopnea index (AHI). However, a progressive recurrence of clinical 
complaints and reemergence of abnormal PSG findings during the following 
2.5 occurred, affecting both incompletely resolved SDB at 6 months, as well 
as those children with normal test results at 6 month post T&A. About 25% 
of the children with normal PSG results at 6 months still normal findings at 
the end of the study. (Bonuck and colleagues found in a large, longitudinal 
study of symptoms associated with SDB that adenoidectomy lowered the risk 
of future SDB symptoms by about 40-50%). [24] An interesting finding in 
the Taiwanese study came from comparison of the 2 age groups over time: 
the younger group had less “recurrence”, and when recurrence was present, 
it took longer to reappear and was less severe. The investigators concluded 
that: 1) It is important to recognize the SDB syndrome early; 2) It is important 
to perform T&A at an early age if SDB is present; and 3) even with early 
intervention, a large portion of children with SDB will redevelop SDB overtime.

We propose that one reason for high rates of re-emergence of SDB in 
susceptible children is that normal nasal breathing has not been completely 
or lastingly reestablished after T&A, contributing to facial growth alterations 
and/or orofacial muscle tone deficits that predispose to further SDB over 
time. The importance of adequate nasal airway development and patency, the 
absence of which is clinically seen as mouth breathing, is suggested by both 
experimental findings and in a variety of clinical scenarios, described below.

Mouth breathing is common [24] – reported in 10-25% of children [30] – but 
as a marker or contributor to sleep disordered breathing, its role is largely 
unstudied. Intriguing associations exist, and are provided in detail below.

Interactions Between Orofacial Function and Growth: Experimental Data 

Involving Nasal Obstruction

The observation that increased nasal resistance and its companion, 
chronic oral breathing, alter facial growth is by no means new in medicine 
- Meyer described “adenoidal facies” in 1868, in which nasal obstruction 
from adenoidal hypertrophy led to what he termed “long face syndrome”. 
Other have also commented on the apparent relationship between 
function and form [28]–i.e., obstruction and “deviant facial growth.”  

The craniofacial growth consequences of frequent mouth breathing may 
predispose to SDB. Mouth breathing has been demonstrated to lead 
to changes in muscle recruitment in the upper airway, which then alter 
craniofacial growth [27,31]. Small studies have evaluated the influence 
of oral breathing due to nasal obstruction on dento-facial development 
[32-34]. Over thirty years ago, a series of experiments in which nasal 
obstruction was induced in Rhesus monkeys for the first six months of 
life demonstrated that blockage of the nasal passages led to narrowing 
of dental arches, decreased maxillary arch length, and increased anterior 
facial height, as well as anterior cross-bite and maxillary overjet. [35-
37] In these studies, EMG activity of oral facial muscles, including the 
geniohyoid and genioglossal muscles of the tongue, the suprahyoid 
dorsal tongue fibers, the upper lip elevators, and the digastric muscles, 
was shown to be abnormal in the monkeys with nasal obstruction. These 
experiments related morphometric skeletal changes to changes in muscle 
tone, which were present in the setting of continuous mouth breathing.
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In humans, abnormal masseteric contractions have also be demonstrated 
in the presence of mouth breathing [38], suggesting that abnormal 
orofacial muscle activity links nasal obstruction to deficits in structural 
airway growth.  Secondary posture changes associated with chronic mouth 
breathing have also been identified [30,39,40]. Interestingly, in the Rhesus 
monkey model, removal of nasal obstruction at 6 months led to return of 
normal nasal breathing and yielded improved morphometric development, 
whereas continued impairment of normal nasal breathing led to continued 
mouth breathing and abnormal oral-facial growth and development.

Interactions Between Orofacial Function and Growth: Observations in 

Disorders Involving Upper Airway Muscle Dysfunction 

Increased nasal resistance is unlikely to be the sole avenue to chronic 
oral breathing and subsequent craniofacial growth alterations. In humans, 
neuromuscular disorders provide further insight about the relationship 
between altered muscle tone and changes in craniofacial development. 
[41-43] for example, in the myotonic dystrophies and some congenital 
myopathies, abnormal orofacial muscle tone leads to impaired development of 
craniofacial structures. Presentation includes increased vertical facial growth, 
a narrower maxillary arch, and deeper palatal depths. In these disorders, 
abnormal orofacial muscle tone has consequences for the growth of upper 
airway structures, in association with early and chronic mouth breathing and 
frequent development of obstructive SDB, with rates reported to be 43-69%.

Ehlers-Danlos Syndrome (EDS), on the other hand, is an inherited 
connective tissue disorder involving abnormal collagen. The collagen-
vascular mutations seen in Ehlers-Danlos syndrome lead to abnormal facial 
growth. These changes lead to narrow nasal passages, forcing mouth 
breathing, particularly during sleep [44]. Clinical evaluation demonstrates 
abnormally long facial shape, narrow and/or high maxillary hard palate, 
often with crossbite. While initially only abnormalities of the naso-maxillary 
complex maybe seen, as patients get older, defects of the mandibular 
condyle may become evident, which we hypothesizeis promoted by the 
presence of chronic oral breathing. A similar pattern of facial growth 
abnormality is noted with dental agenesis: Mutations in homeobox genes 
including those involved in normal tooth development (including those with 
ectodysplasin A –EDA- and WNT 10A genes as noted in our patients) lead to 
narrow facial skeleton, mouth breathing and, in our study, to SDB [45-48].

History of prematurity is another circumstance associated with higher 
likelihood of sleep disordered breathing in childhood, and is therefore another 
interesting example of the interplay between muscle tone, craniofacial growth, 
and nasal versus oral breathing route. Recently a large convenience cohort 
of 300 premature infants (36 to 27 weeks gestational age) was followed for 
3 years after birth with clinical evaluation, psychometric testing, facial and 
oral dimension assessment, and PSGs at birth, 12, 24 and 36 months of 
age. [49-50] as expected, the infants had a variable degree of hypotonia, 
with severity generally related to degree of prematurity. High and narrow 
hard palate (HNP) was noted at birth in many premature infants and was 
more common with younger gestational age; HNP infants were more likely to 
exhibit mouth breathing; and their mean apnea-hypopnea index (AHI) was 
significantly higher compared to the non-high/narrow palate group; and the 
HNP infants were also found to have significantly more feeding difficulties. 
While many infants with feeding difficulties did not receive early feeding/ 
orofacial education services, including sensory stimulation training and oral-
facial exercises, 42infants did receive these services and rather remarkably, 
demonstrated improvements in palatal dimensions at 36 months relative 
to those without orofacial training. We hypothesizethat orofacial muscle 
development played a role in normalization of palatal structures at 36 months. 

There were also 23 infants who had a normal palate at birth, but 
evolved toward HNP, mouth breathing and SDB, suggesting that 
postnatal developmental factors also alter palatal growth [49].

In summary, whether experimentally induced or developmentally provoked, 
science and nature have provided with examples of the interplay between 
increased nasal resistance and/or poor muscle tone leading to chronic 
oral breathing, and subsequent altered craniofacial dimensions. We 
believe that the presence of chronic oral breathing is both a marker of 
an inadequate or obstructed nasal-pharyngeal airway, and a marker of 
persisting abnormalities in the developmental interplay between muscular 
control, breathing route, and structural growth of the upper airway.  

Applications in the Treatment of Pediatric Sleep-Disordered Breathing

While the above considerations are suggestive, much more work is needed to 
understand chronic mouth breathing as a marker of, and possible precipitator 
of, SDB in pediatrics. To further understand the proposed detrimental role 
of abnormal orofacial tone and mouth breathing during sleep, PSGs of 64 
non-obese children aged 3 to 9 years (with mean AHI=8.5 events/hour and 
mean flow limitation= 76%), and who had PSGs pre- and post- treatment for 
SDB, were assessed [51]. In our lab, an oral-only sensor (utilizing an oral 
scoop) is used toaccurately and simply monitors mouth breathing [52]. In 
all of the baseline PSGs of the 64 children with SDB, there was evidence 
of excessive mouth breathing (defined as at least one third of total sleep 
time) on baseline diagnostic PSG. After adenotonsillectomy, 26 children 
had an AHI equal or higher than 1.5 events/hour. These children continued 
to have evidence of significant oral breathing. An additional 9 children 
whose AHI was under 1.5 events per hour also continued to have oral 
breathing – this is a very interesting group deserving further study. Clinically, 
children with SDB and persistent chronic mouth breathing after T&A may 
be referred for myofunctional therapy [53] in addition to usual therapies 
(e.g., consideration of anti-inflammatory medications, rapid maxillary 
expansion, CPAP). Eighteen children returned for 12 month follow-up, with 
only 9 having completed 6 months of myofunctional therapy. Though the 
numbers are very small, those who completed myofunctional therapy in 
addition to usual therapies were observed to have had improvements in 
nasal breathing as well as sleep, as measured by AHI and nasal flow 
limitation, beyond improvements seen in children without myofunctional 
therapy [51]. This suggests that even after nasal obstruction has been 
alleviated, improving muscle function of certain airway muscles, including 
the tongue, may improve function and/or growth of the upper airway, 
with resultant consequences for nasal breathing during sleep [51-55]. 

Observations and Conclusions: The Interplay Between Muscle Activity, 

Structural Growth, and Breathing During Wake and Sleep

The interaction between orofacial structural growth and muscle activity starts 
early in development, and the physiologic functions of suction, mastication, 
swallowing and nasal breathing in infancy play an important role in 
stimulating subsequent growth [55-58]. In the service of these functions, 
orofacial muscle use serves to help stimulate the direction and degree 
of growth. Mouth breathing is associated with altered oral-facial muscle 
activity and oral-facial growth. As such, its persistence is never normal. 
In fact, oral breathing has been termed “the most obvious manifestation of 
a syndromic pattern” involving a circuit of frequent infections, development 
of malocclusion, incorrect phonation, abnormalities of body posture, and 
changes in sleep. [30] Fortunately, oral breathing as a clinical sign 
has the advantage that its presence can be detected by simple direct 
observation, and its severity during sleep can be quantified with PSG. 
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During the past several decades, efforts have been undertaken to develop 
programs that will foster normal development of orofacial functions in at-
risk children, including appliances as well as speech therapy, even, it could 
be argued, without recognition of all of the many benefits of doing so. 
Reeducation programs targeting normal orofacial muscle function have been 
developed in many countries, particularly among the orthodontic field, where 
oral-facial growth problems are often first identified [30,55,59-60]. Variants 
of myofunctional therapy have also been used in muscular dystrophies to 
delay secondary impacts on craniofacial bone growth and maxilla-mandibular 
impairment, and in young children to correct speech abnormalities, 
another common consequence of improper orofacial/ genioglossal tone, 
coordination, and/or structure. Despite these many applications, it is only in 
the recent past that myofunctional therapy has been proposed to make an 
impact in the treatment of SDB [30,53-54]. This is somewhat surprising, 
since muscle retraining has been used in adults with OSA with reduction 
of AHI, even without a proposed impact on the facial skeleton. Timing is 
likely to be important, since the gains from therapy are proposed to be via 
a mechanism of improved nasal breathing and improved craniofacial growth.  
Unfortunately, except for very limited reports, usage of myofunctional therapy 
very early in the course of SDB in pediatrics is limited, despite the fact that 
these therapies have existed for a long time. Thinking broadly, it could 
be argued that all of the accepted therapies for pediatric SDB may target 
improved nasal airflow one way or another; adding muscle strengthening 
might be an additional tool towards encouraging optimal craniofacial growth 
and perhaps long term improved outcomes in those at risk for SDB.

We conclude that oral breathing is an important clinical marker of orofacial 
muscle dysfunction, which may be associated with palatal growth restriction, 
nasal obstruction, and/or disorders of musculoskeletal dysfunction.  Framing 
full treatment of pediatric SBD as restoration of continuous nasal breathing 
during wakefulness and sleep ought not to be considered. Our view based 
on the collected data is that if nasal breathing is not restored, despite short-
term improvements after T&A, continued use of the oral breathing route 
will be associated with abnormal impacts on airway growth and possibly 
blunted neuromuscular responsiveness of airway tissues, both of which may 
predispose to the eventual return of upper airway collapse in later childhood, 
or in the full blown syndrome of OSA in adulthood. We believe elimination 
of oral breathing, i.e., restoration of nasal breathing during wake and sleep, 
may be the only valid “finish line” in pediatric sleep disordered breathing.  
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