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Our visual system is plastic and adaptive in response to the stimuli and environments we experience.
Although visual adaptation and plasticity have been extensively studied while participants are awake, lit-
tle is known about what happens while they are asleep. It has been documented that sleep structure as
measured by sleep stages using polysomnography is altered specifically in the first sleep session due to
exposure to a new sleep environment, known as the first-night effect (FNE). However, the impact of the
FNE on spontaneous oscillations in the visual system is poorly understood. How does the FNE affect the
visual system during sleep? To address this question, the present study examined whether the FNE mod-
ifies the strength of slow-wave activity (SWA, 1–4 Hz)—the dominant spontaneous brain oscillation in
slow-wave sleep—in the visual areas. We measured the strength of SWA originating in the visual areas
during the first and the second sleep sessions. Magnetoencephalography, polysomnography, and mag-
netic resonance imaging were used to localize the source of SWA to the visual areas. The visual areas
were objectively defined using retinotopic mapping and an automated anatomical parcellation tech-
nique. The results showed that the strength of SWA was reduced in the first sleep session in comparison
to the second sleep session, especially during slow-wave sleep, in the ventral part of the visual areas.
These results suggest that environmental novelty may affect the visual system through suppression of
SWA. The impact of the FNE may not be negligible in vision research.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A growing body of evidence suggests that our visual system
continues to be plastic during sleep. In the early postnatal brain,
ocular dominance plasticity takes place not only during wakeful-
ness after visual experiences, but also during subsequent sleep in
young cats and mice (Aton et al., 2009, 2013; Frank, Issa, & Stryker,
2001; Hensch, 2005). Performance in visual tasks significantly im-
proves after sleep in adult humans (Gais et al., 2002; Karni et al.,
1994; Stickgold, James, & Hobson, 2000; Yotsumoto et al., 2009).
Moreover, sleep deprivation has been shown to nullify sleep facil-
itation effect in visual tasks (Stickgold, James, & Hobson, 2000).
These studies suggest that sleep plays a critical role in visual plas-
ticity. However, the detailed neural mechanism of this sleep-
dependent visual plasticity is not completely understood.

Importantly, to investigate the neural mechanism of
sleep-dependent visual plasticity, sleep quality would be a crucial
factor that needs to be controlled, because it may affect brain activ-
ities and plasticity during sleep (Dresler et al., 2010; Manoach &
Stickgold, 2009). The first-night effect (FNE) is a sleep disturbance
that is observed particularly in the first session of sleep experi-
ments (Agnew, Webb, & Williams, 1966; Rechtschaffen & Verdone,
1964; Tamaki et al., 2005a), which could be a confounding factor in
the field of sleep research. In the first sleep session, latencies to
sleep onset and to rapid-eye movement (REM) sleep are longer,
the proportion of wakefulness during bed time is increased, and to-
tal sleep time is decreased, compared to the second sleep session
(Agnew, Webb, & Williams, 1966; Curcio et al., 2004; Tamaki
et al., 2005a, 2005b; Tamaki, Nittono, & Hori, 2005). Sleep quality
improves significantly in the second sleep session in younger and
healthy participants (Agnew, Webb, & Williams, 1966; Lorenzo &
Barbanoj, 2002). To control for the FNE, it has been recommended
to incorporate adaptation sleep sessions before experimental sleep
sessions, which would let participants adapt to a new sleep envi-
ronment (Tamaki, Nittono, & Hori, 2005).

Although the FNE impact on sleep structures has been well doc-
umented, the FNE impact on spontaneous oscillations and plastic-
ity during sleep is yet to be investigated. In particular, it is
imperative to examine how the FNE modifies slow-wave activity
(SWA, 1–4 Hz), one of the spontaneous oscillatory activities during
non-rapid-eye movement (NREM) sleep, in the visual area, because
SWA is suggested to be involved in various types of learning
including visual perceptual learning (Aeschbach, Cutler, & Ronda,
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2008; Born & Wilhelm, 2012; Tamaki et al., 2013; Tononi & Cirelli,
2003). If SWA in the visual area is affected by the FNE, this will
pose a critical confound for studies investigating the mechanisms
of visual plasticity during sleep. In this case, using the data of the
first sleep session should be discouraged. On the other hand, if
the impact of the FNE on SWA originating in the visual area is
small, we may not need to consider the FNE in future studies of
sleep-dependent visual plasticity, which would save time and
money for vision sleep research. Thus, it is necessary to ask
whether the FNE modulates SWA in the visual cortex.

To our knowledge, however, there is no clear consensus on
whether the FNE modifies SWA in the visual area, as argued below.
First, we have found 58 papers on the FNE, among which there
were only 14 papers that employed a young (age range: 16–
39 yrs) and healthy population to investigate the FNE using poly-
somnography (PSG) measurement of at least two nights (Agnew,
Webb, & Williams, 1966; Browman & Cartwright, 1980; Coble
et al., 1974; Curcio et al., 2004; Kajimura et al., 1998; Lorenzo &
Barbanoj, 2002; Rechtschaffen & Verdone, 1964; Rosadini et al.,
1983; Sharpley, Solomon, & Cowen, 1988; Suetsugi et al., 2007; Ta-
maki et al., 2005a, 2005b; Tamaki, Nittono, & Hori, 2005; Toussaint
et al., 1997). Among those, there were only a handful of studies
that examined the impact of the FNE on the strength of SWA, using
a power spectral analysis (Curcio et al., 2004; Tamaki et al., 2005b;
Toussaint et al., 1997). The impacts reported were contradictory:
increase in central brain regions (Curcio et al., 2004), decrease in
frontal brain regions (Tamaki et al., 2005b), and no changes
(Toussaint et al., 1997) in the first compared to the second sleep
session. Unfortunately, there is no study that has investigated
SWA in the occipital area.

Second, which brain regions, including in the visual areas, are
susceptible to the FNE is also unclear, as modification of SWA
strength could take place not only evenly in the brain but also in
a particular region. Recent studies have suggested that SWA can
be modulated and generated locally (Huber et al., 2004; Tononi &
Cirelli, 2003; Vyazovskiy et al., 2011), not uniformly across brain
regions, and may propagate across other brain regions from the
frontal regions (Massimini et al., 2004; Nir et al., 2011). Moreover,
the susceptibility of SWA to the FNE may not be consistent across
the brain (Cajochen et al., 2006). The study by Cajochen et al.
(2006) reported that the age-related reduction of SWA was prom-
inent only in the frontal region, but not in the occipital region. This
line of studies suggests that SWA in the visual area could be either
suppressed by or resilient to the FNE locally, independent of other
brain regions such as the frontal (where SWA decreased, as re-
ported by Tamaki et al., 2005b) or central (where SWA increased,
as reported by Curcio et al., 2004) brain regions. On the other hand,
global decreases of SWA, including occipital areas, is also possible,
due to sleep deterioration (Aeschbach, Cutler, & Ronda, 2008; Car-
rier et al., 2011; Walsh, 2009; Westerberg et al., 2012). Thus, it is
also possible that SWA could be decreased globally including the
visual area by the FNE.

In other words, whether the FNE impacts SWA in the visual area
may depend on how globally the FNE impacts the brain. That is, if
the FNE impacts the brain globally, it is possible that the strength
of SWA is decreased in the visual areas, as well as in the frontal
areas, due to deterioration in sleep quality. On the other hand, if
the FNE impacts locally in a limited region (i.e., frontal areas), the
strength of SWA may not be decreased in the visual area in the first
compared to the second session. Moreover, the impact of the FNE on
SWA may differ among the visual areas, because functional distinc-
tions including attention and perception among the visual areas,
such as the ventral and dorsal early visual areas, and the higher vi-
sual areas, have been suggested (Goodale, 1993; He, Cavanagh, &
Intriligator, 1996; Mishkin & Ungerleider, 1982; Previc & Mullen,
1990; Rubin, Nakayama, & Shapley, 1996). Furthermore, the
strength of SWA could even be increased in the visual area in the
first sleep session: in the first sleep session, subjects are exposed
to a new sleep environment with new objects and equipment,
which could increase visual usage during wakefulness, thereby
potentiating visual neurons to facilitate visual plasticity (Torasdot-
ter et al., 1996, 1998). According to the synaptic homeostasis
hypothesis (Tononi & Cirelli, 2003), SWA should be increased in
the brain regions that have been extensively used and in synapses
potentiated during prior wakefulness. Thus, the extensive usage of
the visual area during wakefulness may result in SWA increase in
the visual area during the subsequent sleep in the first sleep session.

In the present study, we tested whether the SWA strength is
changed in the visual area in the first compared to the second ses-
sion. If the FNE impacts the brain globally, the strength of SWA
may be decreased in the visual area in the first compared to the sec-
ond sleep session. On the other hand, if the impact of the FNE is lo-
cal, then the strength of SWA may not be decreased in the visual
area due to the FNE; in this case there would be two scenarios.
In one, the strength of SWA may be increased in a visual area if
the synaptic strength were greatly increased in the visual area
(Tononi & Cirelli, 2003). In the other, there would be no change
in SWA of a visual area in the first sleep session compared to the
second, if neither the FNE nor visual plasticity affect the visual
area, or if both affect the visual area and cancel each other out.
To test these possibilities, we compared the strength of SWA be-
tween the first and second sleep sessions in three visual areas:
the ventral and dorsal early visual areas, and the object area of
the higher visual area. Furthermore, to compute SWA originating
in these visual areas, we employed a source-localization technique
(Ahveninen et al., 2007; Lin et al., 2004) with a combination of
magnetoencephalography (MEG), PSG and magnetic resonance
imaging (MRI). We used this method because the advanced
source-localization technique would allow us to measure the
SWA strength in the sub-regions within the visual area with high
spatial resolution (Ahveninen et al., 2007; Dale & Sereno, 1993;
Dale et al., 2000; Lin et al., 2004).
2. Material and methods

The present paper is based on a new analysis of our past pro-
jects that utilized the MEG and MRI source localization technique
on sleeping brain. The past projects had different purposes, thus,
the original experimental designs were slightly different. This sec-
tion describes both the original designs and how we conducted the
analysis of the present paper.
2.1. Subjects

After experimenters thoroughly described the purpose and pro-
cedure of experiments to the subjects, potential subjects com-
pleted questionnaires regarding their sleep–wake habits; usual
sleep and wake time, regularity of their sleep–wake habits and life-
style, habits of nap-taking, and information regarding their physi-
cal and psychiatric health including sleep complaints. Anyone with
physical or psychiatric disease, currently receiving medical treat-
ment, or suspected of having a sleep disorder was excluded. People
who had the habit of taking a nap, consuming alcoholic beverages
before sleep, or smoking were also excluded. Only people who had
regular sleep–wake cycles were included, i.e., differences between
average bedtimes, sleep durations and wake-up times on week-
days and weekends were less than 2 h. The average sleep duration
for each potential subject ranged from 6 to 9 h regularly. The stud-
ies were approved by the institutional review board of the Massa-
chusetts General Hospital where the data were collected and of
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Brown University where the data were analyzed. All subjects gave
written informed consent for their participation in experiments.

A total of 10 subjects data sets (5 females and 5 males, mean age
26.5 ± 0.99 years) were analyzed in the present paper. These sub-
jects were chosen because they had MEG recordings for both the
first and second night sleep sessions.

2.2. Experimental procedures

In the original experiments, three to four sleep sessions were
conducted in total, depending on the project, followed by one
MRI session. In all sessions, MEG and PSG were measured during
sleep (for detail, see Section 2.3). In the original experiments, tak-
ing into account individual circadian rhythm variations, each sub-
ject’s sleep time was set to their habitual sleep time for both
sessions instead of enforcing a uniform time. On average, the lights
were turned off around midnight, and the termination of recording
was determined depending on the purpose of each project. In one
project, the recording was terminated either when the subject
showed REM sleep or when 90 min had elapsed. In another project,
the recording was terminated when 180 min had elapsed. After the
recording, the subjects were allowed to sleep for the rest of the
night. The first and second nights were not consecutive in any of
the projects. Starting three days before the onset of the experi-
ment, subjects were instructed to maintain their sleep–wake hab-
its, (i.e., their daily wake/sleep time and sleep duration). One day
before each experiment, they were instructed to refrain from alco-
hol consumption, unusual physical exercise, and nap taking. Their
sleep–wake habits were monitored by a sleep log to ensure the
success of this procedure.

2.3. Data acquisition

MEG and PSG were simultaneously recorded in a magnetically
shielded room. PSG consisted of EEG, electromyogram (EMG), elec-
trooculogram (EOG), and electrocardiogram (ECG). EEG was re-
corded at 4–7 scalp sites (including C3, C4, O1, O2, Fz, Cz, Pz)
according to the 10–20-electrode system referenced to the nasion.
EOG was recorded from two electrodes placed at the outer canthi
of both eyes (horizontal EOG). EMG was recorded bipolarly from
the mentum. ECG was recorded from two electrodes placed at
the right clavicle and the left rib bone. Electrode impedance was
kept below 5 kX. MEG data were collected using a 306-channel
whole-head Vectorview system (Elekta Neuromag, Helsinki, Fin-
land) with 204 planar gradiometers and 102 magnetometers. Both
MEG and EEG data were recorded at a sampling rate of 600 Hz. The
data was filtered between 0.1 and 99 Hz, and was re-sampled at
198 Hz. All epochs with changes that exceeded 3000 fT/cm at any
MEG channel or that were contaminated by artificial noises were
discarded. The positions of all scalp electrodes, anatomical land-
marks including the nasion and two auricular landmarks, and four
head-position indicator coils were measured using a FastTrack 3D
digitizer (Polhemus, Colchester, VT). Head position within the MEG
sensor array was measured at the beginning of the session. Five-
minute empty room MEG recordings were also made immediately
prior to each experiment for the purpose of estimating the noise
covariance matrix (Ahveninen et al., 2007).

MRI anatomical data was used for determining the conductor
geometry for the boundary element model (BEM) of the head
(Hamalainen & Ilmoniemi, 1984; Hamalainen & Sarvas, 1989),
and for registering the MEG sensors’ locations with the individual
subject’s anatomy (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, &
Dale, 1999). Subjects were scanned in a 3 T MR scanner (Trio, Sie-
mens); a head coil was used in all experiments. Three T1-weighted
MR images (MPRAGE; TR = 2.531 s, TE = 3.28 ms, flip angle = 7�,
TI = 1100 ms, 256 slices, voxel size = 1.3 � 1.3 � 1.0 mm) were
acquired. Data was inflated for each participant for brain parcella-
tion to localize individual gyri and sulci (Destrieux et al., 2010; Fis-
chl et al., 2004). This information was used for the region-of-
interest (ROI) analysis described later.

2.4. Sleep-stage scoring procedure and the definition of the FNE

EEGs were scored and classified into sleep stages for every 30-s
epoch according to standard criteria (Rechtschaffen & Kales, 1968).
EEG recordings from the C3 electrode were used for this scoring; if
the C3 recordings were contaminated by artifacts, C4 recordings
were used instead. The same scalp area was used for scoring across
individuals and across nights. The following terminology was used
for the stages of sleep: stage W (wakefulness), stage 1 (NREM sleep
stage 1), stage 2 (NREM sleep stage 2), slow-wave sleep (NREM
sleep stages 3 + 4), stage REM (sleep stage REM). Sleep onset was
defined as the time taken to reach the first epoch of stage 2 after
lights off. The following variables were calculated for each subject
for assessment of basic sleep structure (sleep variables): latency to
each sleep stage (min), the time spent in each sleep stage (min),
and percent sleep efficiency [(Total sleep time/Total recording
time) � 100].

While there could be various measures to indicate the presence
of the FNE, we decided to use the latency to sleep onset since this
has been shown to be indicative as the measurement of the FNE
(Tamaki, Nittono, & Hori, 2005). Although the latency to stage
REM may also be useful to quantify the FNE, this could not be used
because data of stage REM was not necessarily measured due to
the experimental procedure adopted in a past project (see
Section 2.2).

2.5. Data entered into the present analysis

In the present study, we decided to analyze the data that were
collected from the first two sleep sessions for the following two
reasons. First, the experimental intervention to sleep took place be-
tween the end of the second sleep session and the start of the third
sleep session in the majority of subjects. The task performed before
the sleep session may have affected the subsequent sleep (Gais
et al., 2000; Karni et al., 1994; Mascetti et al., 2013; Stickgold,
James, & Hobson, 2000; Tamaki et al., 2013; Yotsumoto et al.,
2009). Second, we were particularly interested in the difference be-
tween the first and second sleep sessions, because the FNE is lar-
gely reduced in the second session at least with regard to NREM
sleep variables (Agnew, Webb, & Williams, 1966).

To compare the strength of SWA between the first sleep session
and the second, we used the first sleep cycle of NREM sleep that oc-
curred within 90 min from lights out, because all of the subjects
had this segment.

2.6. MEG wavelet and source localization analysis

A Morlet wavelet analysis (Ahveninen et al., 2007; Lin et al.,
2004) was applied to MEG raw data every 30-sec epoch to obtain
spectral power from 1 to 4 Hz that corresponds to sleep SWA fre-
quency range (Huber et al., 2004). To localize the current sources
underlying the MEG signals, we employed the cortically con-
strained minimum-norm estimate (MNE) using individual ana-
tomical MRI and constrained the current locations to the
cortical mantle (Ahveninen et al., 2007). Information of the
MEG sensors’ locations and the structural MRI segmentation were
used to compute the forward solutions for all source locations
using a single-compartment boundary element method (BEM;
Hamalainen & Sarvas, 1989). The individual forward solutions
constituted the rows of the gain (lead-field) matrix. For inverse
computations, the cortical surface was decimated to �20,000
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vertices per hemisphere. The noise covariance matrix was com-
puted from the empty-room MEG data. These two matrices were
used to calculate the inverse operator to yield the estimated
source activity, as a function of time, on a cortical surface (Ahven-
inen et al., 2007). We did not use EEG data for the source locali-
zation, because the number of EEG channels was very small (4–7
channels) compared to MEG (306 channels).

We computed the average strength of SWA (1–4 Hz) on the first
(Night 1) and the second (Night 2) sleep sessions in each of the
ROIs (see Section 2.7). As the strength of SWA changes with
elapsed time from sleep onset as well as with sleep stage, we
examined the time-dependent and sleep-stage dependent compo-
nents separately. First, to examine the time-dependent component
of SWA, the mean of the MEG currents were calculated every 1 min
for each ROI (see Section 2.7). Then, the time-course data was fur-
ther divided into three epochs to test whether the FNE had an im-
pact on a specific time window. Each epoch corresponded to a
specific phase of the development of SWA, that is, initiation (epoch
1), development (epoch 2), and maintenance/decline (epoch 3) of
SWA. Second, to examine the differential impact of the FNE among
the sleep stages, a sleep-stage dependent component was com-
puted. To compute the sleep-stage dependent component, the
strength of SWA for every 30-s epoch that corresponded to each
sleep-stage epoch, was averaged separately for each sleep stage.
Since we defined sleep onset as the onset of stage 2, SWA during
stage 2 and slow-wave sleep were computed as SWA during sleep.
In addition, SWA during stage W was calculated as SWA during
wakefulness.
2.7. ROI

We defined three ROIs: the ventral and dorsal early visual areas
and the higher visual area, to test whether there are differences in
the impact of the FNE among the regions. The procedure to localize
these ROIs was as follows. We first identified the ventral and dorsal
part of V1, V2, and V3 for each subject by a standard fMRI retino-
topic mapping technique (Engel et al., 1994; Fize et al., 2003;
Sereno, Mcdonald, & Allman, 1994; Yotsumoto, Watanabe, & Sasa-
ki, 2008; Yotsumoto et al., 2009). The higher visual area was de-
fined anatomically using an automated parcellation system
(Fischl et al., 2004), as the posterior part of the inferior temporal
sulcus that roughly corresponds to higher visual areas specializing
in object processing (Kourtzi & Huberle, 2005).

For the retinotopic mapping, blood oxygen level dependent
(BOLD) signals were acquired using a gradient echo EPI sequence
(TR = 2 s, TE = 30 ms, Flip Angle = 90�). Twenty-five contiguous
slices (3 � 3 � 3.5 mm) orientated orthogonal to the calcarine sul-
cus were acquired covering the occipital to parieto-temporal corti-
ces. Data were analyzed with FSFAST and FreeSurfer (http://
surfer.nmr.mgh.harvard.edu) software. All functional images were
motion corrected (Cox & Jesmanowicz, 1999), spatially smoothed
with a Gaussian kernel of 5.0 mm (FWHM), and normalized indi-
vidually across scans. Functional data were registered to the indi-
vidual reconstructed brain (Dale, Fischl, & Sereno, 1999; Fischl,
Sereno, & Dale, 1999). The individually reconstructed brain was
also used for an automated parcellation (Destrieux et al., 2010;
Fischl et al., 2004) for objective anatomical segregation to localize
higher visual area in this study.
3. Results

3.1. Sleep variables

First, we compared sleep structures on Night 1 and Night 2 to
confirm that the FNE had occurred (Table 1 and Fig. 1). Sleep stages
kept changing back and forth between different sleep stages on
Night 1. In contrast, the sleep stage transition was smoother on
Night 2 (Fig. 1). The sleep onset latency was significantly longer
on Night 1 than on Night 2 (t(9) = 2.438, p = .038; two-tailed paired
t test), which confirmed the presence of the FNE. In addition,
latency to stage 1 was significantly different (t(9) = 2.428,
p = .038). The time spent in stage W (Table 1, t(9) = 2.190,
p = .056) tended to increase, the time spent in slow-wave sleep
decreased (t(9) = 2.389, p = .041), and percentage sleep efficiency
was significantly lower (t(9) = 2.247, p = .049;) on Night 1
compared to Night 2.

3.2. Time-course changes of SWA in the visual areas

We next investigated the time course of SWA on Nights 1 and 2.
In both sessions, SWA increased over time; however, there was a
notable difference between sessions (Fig. 2). The result showed
that SWA was profoundly decreased on Night 1 throughout the
epochs. A 3-way repeated measures ANOVA was conducted to
see whether the following factors impacted the strength of SWA;
the factors were ROI (ventral and dorsal part of early visual areas,
and higher visual area), epoch (1–3), and session (Night 1 and 2).
There was a significant main effect for all three factors (ROI,
F(2,18) = 53.642, p < .001, e = 1; epoch, F(2,18) = 14.307, p < .001,
e = 1; session, F(1,9) = 5.156, p = .049, e = 1). In addition, the
ROI � epoch interaction was significant (F(4,81) = 9.707, p < .001,
e = .57). However, no significant interaction was found for
ROI � session, epoch � session, or ROI � epoch � session. This
analysis indicates that the impact of FNE was present in all ROIs.

3.3. Decreased SWA during slow-wave sleep in the visual areas

Next, SWA was calculated for each sleep stage (stage W, stage 2,
and slow-wave sleep) to examine the influence of the FNE on dif-
ferent sleep stages (Fig. 3). First, a 3-way repeated measures ANO-
VA was conducted to test whether the following factors impact on
the strength of SWA; the factors were ROI (ventral and dorsal part
of early visual area, and higher visual area), sleep stage (stage W,
stage 2, and slow-wave sleep), and session (Night 1 and 2). There
were significant main effects for ROI (F(2,18) = 64.866, p < .001,
e = 1) and sleep stage (F(2,18) = 106.667, p < .001, e = 1), but not
for session. In addition, significant interactions were found be-
tween ROI � sleep stage (F(4,81) = 44.873, p < .001, e = .37), sleep
stage � session (F(2,54) = 6.328, p < .01, e = .53), and ROI � sleep
stage � session (F(4,162) = 5.496, p < .05, e = 40). No significant
interaction was found in ROI � session. These results suggest that
the impact of FNE differed depending on the sleep stage and on
the ROI.

Since a significant interaction associated with the ROI factor
was found, a 2-way repeated measures ANOVA was conducted
subsequently for each ROI to test whether the following factors im-
pacted the strength of SWA; the factors were sleep stage (stage W,
stage 2, and slow-wave sleep) and session (Night 1 and 2). First, in
the ventral part of the early visual area, there was a significant
main effect for sleep stage (F(1,9) = 149.478, p < .001, e = .60).
Moreover, a sleep stage � session interaction was significant
(F(2,18) = 6.554, p < .001, e = .97). Subsequently, post hoc paired
t-tests were conducted for each sleep stage to examine the differ-
ence in the impact of the FNE among sleep stages. There was a sig-
nificant difference between sessions in slow-wave sleep
(t(9) = �2.225, p = .027; two-tailed paired t test), but not in stage
W or stage 2 (ps > .05). This analysis suggests that the strength of
SWA in the ventral part of the early visual area was significantly
reduced in the first-night sleep, especially in slow-wave sleep.
In the dorsal part of the early visual area, a 2-way repeated mea-
sures ANOVA (factors = sleep stage and session) showed that

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Table 1
Basic sleep structure on Night 1 and Night 2.

Sleep variables Night 1 (m ± s.e.m.) Night 2 (m ± s.e.m.) p-Valuea

Latency to sleep stage (min)
Stage 1 7.7 2.36 3.0 0.65 0.038
Stage 2 15.2 3.98 7.4 1.91 0.038
SWS 31.1 5.60 21.1 3.09 0.112

Time in sleep stage (min)
Stage W 15.2 5.32 5.0 1.55 0.056
Stage 1 7.5 1.67 5.2 1.04 0.128
Stage 2 29.4 2.96 33.6 3.37 0.390
SWS 25.9 5.39 37.9 3.64 0.041

Percentage sleep efficiency (%) 82.1 5.94 93.9 2.04 0.049

Since the total recording time varied depending on study protocol, all the sleep variables were calculated from the first sleep cycle of NREM sleep. Percentage sleep efficiency
was calculated by [(Total sleep time/Total recording time) � 100]. SWS, slow-wave sleep.

a Two-tailed paired t test (alpha = 0.05).

Night 1
Night 2

0 15 30 45 60 75 90

W

1

2

SWS

Time from lights off (min)

Sl
ee

p 
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e

Fig. 1. Sleep hypnogram of a representative participant. Data were recorded for
90 min from lights out. X-axis corresponds to the elapsed time from lights out
(min). Y-axis corresponds to each sleep stage (stage W, stage 1, stage 2, and slow-
wave sleep). The red line indicates the stage transition during Night 1, and the blue
line indicates the stage transition during Night 2. SWS, slow-wave sleep.
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SWA was significantly different among sleep stages (F(2,18) =
80.059, p < .001, e = .56). No significant main effect for session or
sleep stage � session interaction was found. The analysis suggests
that the FNE on the strength of SWA in the dorsal part of the early
visual area is limited. For the higher visual area, a 2-way repeated
measures ANOVA (factors = sleep stage and session) showed a sig-
nificant main effect for sleep stage (F(1,9) = 112.429, p < .001,
e = .40). A sleep stage � session interaction was also significant
(F(2,18) = 6.950, p = .006, e = .79). Post hoc paired t tests conducted
for each sleep stage revealed that there was a significant difference
between sessions in slow-wave sleep (t(9) = �1.997, p = .039; two-
tailed paired t test), but not in stage W or stage 2. This suggests
that the strength of SWA in the higher visual area was significantly
reduced in the first-night sleep, especially in slow-wave sleep.

The analyses so far showed that the impact of the FNE on SWA
was significant in slow-wave sleep, especially in the ventral part of
the early visual areas and the higher visual area, but not in the dor-
sal part of the early visual area.
3.4. Individual differences and the gender effect

We also examined individual differences and the gender effect
on SWA. We subtracted the average SWA strength of Night 2 from
that of Night 1 during slow-wave sleep for each visual area individ-
ually, and the FNE was determined to be present if the difference
was smaller than zero. The results showed that nine out of ten sub-
jects showed the FNE in at least one visual area (Table 2). When we
divide the result for each visual area, seven (dorsal part of early
visual area) or eight (ventral part of early visual area and higher
visual area) out of ten subjects displayed the FNE in slow-wave
sleep in the visual areas (Table 2). Next, we sorted the frequency
of the FNE by the gender. There seems to be no significant gender
differences in the frequency of the FNE in any of the visual areas
(all p > .05, chi-square test for each visual area, Table 2).
4. Discussion

The present study examined whether the FNE has any impacts
on the strength of SWA originating in the visual area. Because of
limitations in experimental procedures, we could not compare all
the sleep variables obtained here with those in previous studies
that were computed from full-night recording. There is evidence,
however, that the FNE that we documented in the present study
may be comparable to previous studies. For instance, the change
in sleep onset latency from Nights 1 to 2 (Table 1) were similar
to those in previous studies (e.g., sleep onset latency was 14 min
on Night 1, 7 min on Night 2, in Tamaki et al., 2005a). Duration
of stage W tended to be larger on Night 1 compared to Night 2. Per-
cent sleep efficiency was significantly lower on Night 1. Although
the changes in some of the parameters did not reach significance,
the alteration of the sleep structure recognized in previous re-
search (Agnew, Webb, & Williams, 1966; Curcio et al., 2004;
Toussaint et al., 1997) has also been indicated in our results.

Our results indicated that the impacts of the FNE were slightly
different among the visual areas. First, we conducted the time-
course analysis of SWA (Section 3.2, Fig. 2), which showed a reduc-
tion of SWA in Night 1 in comparison to Night 2 in all of three vi-
sual areas. This seems to support the view that the FNE has a global
impact across brain regions when the analysis does not consider
sleep stages. However, the second analysis by sleep stages illus-
trated the possibility that the impact of the FNE may not be ubiq-
uitous in the visual system. The analyses on sleep stages
(Section 3.3, Fig. 3) showed a significant main effect of ROI and a
significant ROI � sleep stage � session interaction, among others.
This suggests that the impact of the FNE is varied in different ROIs.
Furthermore, the post hoc tests demonstrated a significant sup-
pression of SWA, especially in the ventral part of the early visual
area and the object area of the higher visual area, whereas we
did not find a significant suppression in SWA in the dorsal part
of the early visual area. These results may be a piece of counterev-
idence to the claim that the impact of the FNE is homogeneous
across brain regions.

Interestingly, there was little suppression in SWA in the dorsal
part of the early visual area. This rejects the assumption that the
FNE should reduce the strength of SWA uniformly in the brain.
The result may suggest that the impact of the FNE was negligible
in this region, or that the influence of the FNE may have been
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cancelled out by a local increase of SWA due to the synaptic
homeostatic regulation (Tononi & Cirelli, 2003) in the dorsal
stream (Goodale, 1993; Mishkin & Ungerleider, 1982). It is known
that the lower visual field, which is projected to the dorsal part of
the visual area, has an advantage in perception of particular stimuli
(Previc & Mullen, 1990; Rubin, Nakayama, & Shapley, 1996).
Furthermore, asymmetry in attentional resolution between the
upper and lower visual field has also been suggested (He,
Cavanagh, & Intriligator, 1996). The dorsal part of the visual area
might have been stimulated in the first sleep session where novel
objects and equipment are exposed to the subject. This may result
in a local need of synaptic homeostatic regulation during sleep and
nullify the reduction of SWA caused by the FNE.

We included only younger and healthy participants in the pres-
ent study. Nine out of ten participants showed suppression of SWA
during slow-wave sleep in at least one of the three visual areas.
Thus, the FNE was present in a majority of the participants. Fur-
thermore, there was no significant difference between genders in
the frequency of the FNE. However, the impact of the FNE on
SWA or individual and gender differences may vary with popula-
tions. Previous research suggests that the impact of the FNE differs
by age (Wauquier et al., 1991; Webb & Campbell, 1979) or physical
conditions such as respiratory disorders (Le Bon et al., 2000; Leven-
dowski et al., 2009), chronic fatigue syndrome (Le Bon et al., 2003),
depression (Rotenberg et al., 1997; Toussaint et al., 2000), or post-
traumatic stress disorder (Herbst et al., 2010). Some groups are
suggested to require more days for adaptation (Herbst et al.,
2010; Rotenberg et al., 1997). Thus, greater SWA suppression
may be shown in particular groups.

There are several limitations in the present study. Because we
used the data collected from our past projects that had different
purposes and employed different procedures, the data analyzed
here was restricted to the first sleep cycle that occurred in the ini-
tial 90 min of nightly sleep. Moreover, it is still unclear which brain
regions are affected by the FNE and which are not, because we re-
stricted the regions of interest in the visual area. Whereas the pres-
ent study shows that the visual areas are affected by the FNE
through reduction of SWA in slow-wave sleep, the FNE in other
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Table 2
Frequency of the FNE for each visual area and the gender effect.

FNE presence Visual areas

Ventral Dorsal Higher

Female (N = 5) 5 4 3 4
Male (N = 5) 4 4 4 4
Total # of FNE (N = 10) 9 8 7 8

Each numerical value shows the number of subjects that showed the FNE in each
visual area in slow-wave sleep. The FNE presence shows the total number of sub-
jects who showed the FNE in at least one of the visual areas. Ventral, ventral part of
early visual area; Dorsal, dorsal part of early visual area, Higher, higher visual area.
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cortical regions has yet to be studied in detail. Also, which sponta-
neous oscillations other than SWA, such as alpha or theta oscilla-
tions, are affected by the FNE in the visual area is unclear. Stage
REM parameters should be also tested, because these may be sen-
sitive to adaptation as well (Lorenzo & Barbanoj, 2002). Moreover,
the relationship between neural plasticity and the FNE needs to be
clarified.

In summary, our study is the first to show that the strength of
SWA originating in the visual areas is largely suppressed by the
FNE, although the impact of the FNE may be slightly different
among the visual areas. As our results showed that the strength
of SWA in the visual areas was reduced by the FNE, we suggest that
it is crucial to reduce the FNE in order to study the roles of SWA in
visual learning. Incorporating at least one adaptation session
would be necessary.
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