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a b s t r a c t

As we age, sleep patterns undergo significant modifications in micro and macrostructure, worsening
cognition and quality of life. These are associated with remarkable brain changes, like deterioration in
synaptic plasticity, gray and white matter, and significant modifications in hormone levels. Sleep alter-
ations are also a core component of mild cognitive impairment (MCI) and Alzheimer’s Disease (AD). AD
night time is characterized by a gradual decrease in slow-wave activity and a substantial reduction of
REM sleep. Sleep abnormalities can accelerate AD pathophysiology, promoting the accumulation of
amyloid-b (Ab) and phosphorylated tau. Thus, interventions that target sleep disturbances in elderly
people and MCI patients have been suggested as a possible strategy to prevent or decelerate conversion
to dementia. Although cognitive-behavioral therapy and pharmacological medications are still first-line
treatments, despite being scarcely effective, new interventions have been proposed, such as sensory
stimulation and Noninvasive Brain Stimulation (NiBS). The present review outlines the current state of
the art of the relationship between sleep modifications in healthy aging and the neurobiological
mechanisms underlying age-related changes. Furthermore, we provide a critical analysis showing how
sleep abnormalities influence the prognosis of AD pathology by intensifying Ab and tau protein accu-
mulation. We discuss potential therapeutic strategies to target sleep disruptions and conclude that there
is an urgent need for testing new therapeutic sleep interventions.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Growing older is associated with remarkable sleep disruption,
characterized by reduced ability to transition from wakefulness to
sleep and to stay asleep without waking up. In an extensive meta-
analysis, Ohayon and colleagues (2004) highlighted some of the key
aging-related sleep disturbances, such as delayed circadian rhythm,
a lighter and more fragmented sleep pattern, lower d activity, and
less time spent in the deeper stage. Moreover, sleep features like
sleep spindles (SS) and K-complexes (Kc) also dramatically drop in
frequency and amplitude [1]. The authors suggest that many factors
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are involved in causing sleep changes with age. As an example, the
aging-associated physiological and metabolic changes, as well as
the increased susceptibility to environmental factors increase the
risk to suffer from primary sleep disorders, such as Insomnia and
Sleep Disordered Breathing [1].

Furthermore, disrupted sleep patterns are also a major risk
factor for developing Mild Cognitive Impairment (MCI), which may
convert to Alzheimer’s Disease (AD). Sleep disruptions caused by
cortical and environment modifications are often reported years
before the clinical onset of the disease in elderly individuals,
therefore making them a potential biomarker of the risk in AD.
Then, after the onset and during the progression of MCI/AD, the
sleep abnormalities undergo an even more accelerated worsening.
These indicators suggest a complex bidirectional influence, for
which sleep disruption may both causally contribute to AD devel-
opment, and be a consequence of the onset. The current concept is
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/
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that sleep quality reduction results from amyloid-beta (Ab) aggre-
gation that also triggers hippocampal degeneration and, ultimately,
memory impairment. The hypothesis is that a reduction of slow-
wave activity (SWA) during non-rapid eye movement sleep
(NREM) partly arises from amyloid pathology and contributes to
cognitive decline in elderly individuals [2]. Because the worsening
of sleep quality is among the earliest observable symptoms of MCI
and AD, current theories suggest examining sleep modifications in
pursuit of a biomarker to identify the greater risk of developing
dementia.Within this framework, a decreased duration of rapid eye
movement (REM) and the general slowing down of electroen-
cephalogram (EEG) activity in NREM sleep has been considered as a
potential biomarker. It has been argued that the promotion of slow
waves during the NREM stage in the elderly population may have a
protective effect on AD risk by enhancing Ab clearance [3]. On this
line, it has been shown that elderly people with narcolepsy have a
lower burden in amyloid deposits [4].

The up-regulation of SWA may even restore damage to proteins
caused by oxidative stress, as demonstrated in animal models [5].
Further, the amplitude and duration of SWA during the NREM stage
are important for the long-term consolidation of newly acquired
memories. The current hypothesis is that sleep improvement
would slow the decline in cognitive abilities in AD patients. Within
this framework, restoring slow-wave sleep (SWS) quality and
duration would be a fundamental step in addressing AD symp-
tomatology. Recently, therapeutic attempts aiming at changing
sleep oscillatory activity have been proposed. Light exposure in
combination with melatonin administration may be a valid way to
influence the sleep-wake cycle [6]. Auditory stimulation can
enhance SWA and improve memory retention [7]. Recent evidence
suggests that also noninvasive Brain Stimulation (NiBS) techniques
might be able to restore the sleep quality and preserve or enhance
physiologically-declining cognitive functions [8e11].

The present paper intends to review recent evidence of sleep
modifications in healthy elderly individuals and AD patients along
with the associated brain changes (for a comprehensive scheme see
Fig. 1). We aim to foster an understanding of the tight bidirectional
relationship between sleep quality, normal aging, and AD pathol-
ogy. Further, we discuss potential therapeutic strategies targeting
sleep disruptions using NiBS and sensory stimulation to restore
sleep quality and thus possibly prevent cognitive decline in healthy
aging and AD.

2. Sleep alterations in normal aging

In the next paragraph, we review age-associated sleep changes
(Fig. 2) in circadian rhythms, macrostructure (eg REM-NREM cycle),
microstructure, and EEG features (eg SWA), homeostatic sleep
drive, and prevalence of sleep disorders. Albeit these modifications
are so frequent to be an aging biomarker, individual variability, due
to gender, ethnicity, race, and environment still plays a role in age-
associated sleep abnormalities. In the following chapter, we will
then discuss how these changes might be related to aging-related
processes in the healthy brain such as atrophy.

2.1. Circadian rhythms

Huang and colleagues (2002) found that circadian sleep/wake
rhythms (CR) were weakened and fragmented in the old and oldest
groups as compared to the young and middle-aged groups [12].
Macrostructure and total sleep time (TST) were also significantly
alteredwith age. Individuals shift from amean of 7.4h in early life to
5.6h in old age [13], with some gender differences (men: 5.4h,
women: 6h on average per night [14]. Münch et al. [15] reviewed
the evidence for the effects of aging on CR and found age-related
Please cite this article as: Romanella SM et al., The Sleep Side of Agin
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modifications in terms of amplitude, earlier phase, shortened
repetition time, and worsened capacity to tolerate sudden phase
shifts.

CR changes start to be visible in middle-age subjects with
increased sleepiness during the evening and delayed sleep-onset
latency (time required to fall asleep) [13]. As a consequence, reg-
ular diurnal napping increases, growing 25% after the 75th year and
eventually resulting in a worsened cycle shift [16]. With aging,
difficulties in falling asleep are present not only at the beginning
but also after nighttime arousals (shifts from deeper to lighter
stages). Elderly people usually spend twice as much overnight time
in unwanted wakefulness [17] and this drastically drops sleep ef-
ficiency (% time in bed spent asleep). Elderly individuals are also
more sensitive to the external environment, showing a lower
arousal threshold to auditory stimuli [18]. Once sleep is interrupted
(spontaneously or by external causes) transition from sleep to a
fully awake state occurs also more rapidly in older subjects, thereby
delaying the start of sleep again [19]. Further, the frequency of
arousals is also remarkably higher in elderly people, with different
prevalence between the various sleep stages; older subjects pre-
sent significantly more shifts from SWS to N2 and from N2 to N1,
while in younger subjects the typical pattern is from REM to N1
[20].

2.2. Macrostructure

Aging also influences the structure of REM-NREM cycles (Fig. 2,
panel B); they are shorter and fewer, with a mean of 3.46 cycles per
night compared to the usual 4-5 in adults and teenagers [20].
Noticeably, NREM changes are considered a reliable age-related
biomarker. Elderly people spend less time in a deeper stage, N3,
replaced by a greater amount in lighter phases, N1 and N2
[1,14,17,21e23]. SWS (or N3) reduction begins in middle age,
gradually decreasing until disappearing after the 90th year [1,17].
The increase of time in lighter phases is greater in stage N1 than N2,
but N2 microstructure undergoes more changes, with a decrement
of sleep spindles and K-complexes (see below; [20]). Older women
show a less marked difference in lighter and deeper stages, with a
smaller decrement in SWS than men [1,17].

REM studies, on the other hand, are less developed and
coherent. Some studies reported a slight REM decrease [1,14], but
the drop is not as prominent and typical as the one in NREM sleep.
Time spent in REM seems, indeed, to start its fall only after the
65th-70th year, while NREM starts around 4 decades before [1,14].
Even when reaching older age (around 70 years old), REM and
NREM time decreases differentially: -24 minutes per decade of
NREM compared to -10minutes per decade for REM [21]. It is worth
noticing that other studies failed to find a difference in REM and
NREM sleep age-related modifications [22,23], leaving the discus-
sion open.

2.3. Microstructure and EEG

Recent studies show how typical sleep oscillations are also
dramatically modified on their fundamental components while
growing older.

2.3.1. Slow Waves (SWA)
Evidence supports a reorganization in the N3 during aging. Slow

Waves (d waves) are oscillations with slow frequency (<2Hz) and
high amplitude (>75mV) associatedwith a reduction of homeostatic
sleep pressure [24] and protective effects from awakenings and
arousal [25]. D waves have also been suggested to be implicated in
learning andmemory processing [26]. A drop in total SWA (spectral
power density from 0.5 to 4.5Hz; or d activity), is a particularly
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/



Fig. 1. Sleep and Brain changes in elderly and AD patients during the Lifespan. A comprehensive review of sleep modifications (panel A) and brain changes (panel B) in healthy aging
individuals and AD patients. The items represent investigated and modified variables (red items show a decrease; blue items illustrate an increase). The mean age when MCI or AD is
diagnosed is illustrated by vertical black dotted lines. The horizontal lines indicate the trajectories of sleep and brain changes. Sleep disruptions and cortical alterations start earlier
than clinical symptoms' appearance. Horizontal line slopes depict differences in sleep and cortical abnormalities between healthy elderly and MCI/AD. Black stars show the
prevalence of sleep disorders while growing older. Panel C shows when prevention and potential treatment efficacy would be optimal. NiBS techniques (such as transcranial
magnetic stimulation and transcranial electrical stimulation) are represented at a different age for their applications in prevention and treatment. Non-rapid eye movement sleep
(NREM), rapid eye movement sleep (REM), slow-wave sleep (SWS), slow-wave activity (SWA), sleep spindles (SS), K-complexes (Kc), Total sleep time (TST).
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relevant consequence of aging and is used to test sleep quality and
homeostatic sleep pressure [17,21e23]. The decrement of SWA is
not spatially and temporally homogeneous across the night. There
is a maximal decrease over the prefrontal cortex and in the first
NREM cycle for elderly individuals [23,26]. Both SWA amplitude
and density are significantly reduced in middle-aged adults,
worsening during advancing age [26]. Further, age-related decrease
in power density in q and a frequencies has been shown [23].
Another qualitative change in older individuals is a homogeneous
slowing of SWA of about 0.1 Hz across all scalp sensors [26].
2.3.2. Sleep spindles and K-complexes
While N2 total time is not different between young and elderly

individuals, its EEG features undergo age-related modifications.
Sleep Spindles expression deteriorates, indicating that sleep
microstructure can change without a parallel modification in the
macrostructure [27]. SS can be divided into slow (9-12Hz) and fast
(13-15Hz), and these are differentially affected in aging [28]. While
there is agreement about the age-related drop in fast spindles,
Please cite this article as: Romanella SM et al., The Sleep Side of Agin
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changes in slower-frequency spindles are still not clear [23]. Total
spindle frequency activity (sigma power) is significantly reduced in
middle-aged and older adults compared to young participants [29]
with a bigger drop in the last part of the night [23]. Previous studies
analyzed spindle characteristics, finding that spindles also undergo
a progressive decrement in density, amplitude, and duration with
aging [13,23,26,29e32]. Spindle breakdown is most pronounced
during final N2 cycles [29]. These results are indicative of a different
propagation of spindles through the cortical network in the elderly
compared to young individuals. Thus, SS alterations may be a sign
of the difficulties experienced by elderly individuals in maintaining
sleep during lighter NREM stages [33]. The incidence of both,
spontaneous and elicited Kc, decrease growing older [34,35], with a
significant drop in Kc amplitude evoked by auditory stimuli [13].
2.3.3. Fast oscillations
Faster frequencies, like b (from 15 to 25Hz) or g range (from 30

to 120Hz), are a prominent feature of awake EEG and are typically
associated with normal cognition. Although their presence in sleep
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/



Fig. 2. Sleep Differences in Elderly versus Young Individuals. Polysomnographic (PSG) data showing sleep architecture in a young healthy adult (panel A) and an older healthy
adult (panel B). The elderly show a more fragmented and less integrated sleep, shifting from deeper to lighter sleep stages multiple times during nighttime. Schematic illustration
comprehensive of all sleep differences found in healthy elderly compared to young individuals (panel C). Non-rapid eye movement sleep (NREM), rapid eye movement sleep (REM),
slow-wave sleep (SWS), slow waves (SW), slow-wave activity (SWA), sleep spindles (SS), K-complexes (Kc), Total sleep time (TST).
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has been studied, results are contradictory [36e38]. Sleep
deprivation-related EEG slowing over the frontal region during
wakefulness also results in a concurrent reduction in b/g rhythms
[38,39], thereby partially explaining the cognitive impairment
associated to sleep deprivation. As aging is associated with a pro-
gressive reduction in sleep quantity and quality, several researchers
investigated whether age-related cognitive decline might be
related to b/g reduction; while old studies surprisingly highlighted
increased in b activity [40e42], newer paradigms show no differ-
ences between age groups at 65 years [36], leaving the question
open.

Spontaneous g rhythm mostly occurs coupled with q rhythms
during REM sleep [43,44], with a higher presence of low g when
eye movements are present [45]. Importantly, g seems to promote
synaptic plasticity when coupled with q, [46,47] specifically for
phasic REM states, where the synchrony between q and g is
enhanced; this suggests that tonic REM phases support offline
mnemonic processing, while phasic bursts of activity may promote
memory consolidation [48,49]. As a recent study with cortical and
intracortical EEG on epileptic patients under age 50 suggested a
higher presence of g activity during SWS than REM [37], different
roles of g-band may be suggested in NREM and REM (memory
consolidation vs. dreaming state). Sprecher and colleagues (2016)
analyzed results gathered with high-density (256 channels) EEG in
Please cite this article as: Romanella SM et al., The Sleep Side of Agin
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a cohort of 18-65 y/o participants and found greater high g (define
frequency range) power in the older group compared to the
younger one. Unfortunately, this result was secondary to SWA and
sigma (12-15 Hz) drop [36]. Moreover, because the experimental
paradigm involved participants under age 65, new studies are
required to find some clarity regarding high-frequency activity in
older adults.

2.3.4. REM Sleep
Past studies found no changes [50,51], or a decrease [52] in

REM-related eye movement patterns across the lifespan. Further, it
has been shown a reduced duration of movement bursts in elderly
individuals [50] and a reduction in d-q range (0.25-7Hz) and low a
(8.25-10Hz) during REM stages [23].

2.4. Homeostatic sleep drive and subjective complaints

Homeostatic sleep drive is a time-awake dependent process so
that the longer the time spent awake, the greater the drive to fall
asleep. In healthy adult people, longer sleep deprivation and time
spent in wakefulness leads to a more pressing homeostatic sleep
drive, with a consequent increase in SWA and NREM during the
following night [24]. The homeostatic pressure is reflected by SWA
in the first NREM cycle during the initial part of sleep recovery and
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/
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a progressive reduction of SWA during other cycles [23,24]. Indeed,
Kc and SWA reduction supports the idea that homeostatic sleep
pressure decreases across adulthood [51]. Current evidence sup-
ports the notion that, in elderly people, SWA is less influenced by
longer-term wakefulness in comparison to younger control groups
[15,53]. These are indicative of a lighter homeostatic sleep drive in
elderly individuals [28].

Even though the consequences of sleep deprivation seem to be
blunted in the elderly, the prevalence of subjective complaints in-
creases significantly and steadily with advancing age (40-50% of the
entire older population). The most common complaints involve
overnight awake states, light sleep, less total time asleep, early
waking up, and excessive daytime sleepiness [54,55]. Strangely,
even if sleep is qualitatively and quantitatively more disrupted in
men, women complain more about subjective difficulties [1]. Only
half of healthy older adults complain of chronic sleep disruptions,
albeit age-related changes occur in all “optimally aged” elderly. This
means that even those who do not complain of sleep problems
show poor sleep efficiency and quality [56].

2.5. Sleep disorders

Elderly individuals are at increased risk of suffering from pri-
mary sleep disorders, such as insomnia and sleep-disordered
breathing. Insomnia prevalence, in particular, reaches 40% in over
65 y/o individuals, with greater frequency in women [54]. If un-
treated, insomnia aggravates depression and significantly worsen
cognitive skills [57]. As aforementioned, adulthood arousal
threshold progressively declines, resulting in more awakenings
even in deeper sleep stages like N3 and REM, therefore worsening
insomnia condition [18]. SDB shows also a higher prevalence in
elderly subjects. In a randomly selected cohort of 427 participants
(age range 65-95) 62% of the cohort showed an SDB diagnosis [58].

3. Aging-related neurobiological modifications

The aging process contributes to a great number of quantitative
and qualitative modifications in the brain, starting from the
reduction of synaptic density and plasticity, neuronal loss, and
cortical atrophy, accompanied by hormonal and extracellular
changes. As a consequence of these modifications, sleep and
cognition are highly disrupted. In this section, we address the main
age-related brain modifications, linking them to specific age-
related sleep disruptions and cognitive impairment.

3.1. Synaptic plasticity

A reduction of cognitive activity in the elderly, and a subsequent
modification in synaptic plasticity, is one of the first causative
factors in SWA decline. SWA involves large populations of healthy
neurons able to produce oscillations and also efficient synaptic
connections among them [59]. Current evidence shows that a rapid
increase or decrease in synaptic strength during awake states give
rise to a subsequent enhancement or decline in SWA. During sleep,
slow oscillations renormalize neural activity in the N3 stage, pro-
moting synaptic depression by low levels of norepinephrine, se-
rotonin, and acetylcholine (for a review see Ref. [60]). As
aforementioned, previous studies showed a positive correlation
between SWAduring sleep and the number of potentiated synapses
during wakefulness. The authors argued that learning and motor
tasks trigger greater SWA during sleep that might be explained by
plasticity mechanisms. In line with this, an age-related drop in
brain plasticity and a lack of cognitive activity would account for a
reduction of SWA in the elderly.
Please cite this article as: Romanella SM et al., The Sleep Side of Agin
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3.2. Deterioration of gray matter and functional consequences on
sleep-related EEG

The most characteristic biomarker of the aging brain is the so-
called “shrinking brain phenomenon” [28], a marked decrease in
cortical volume [61e64] that has been measured through different
parameters, such as the total volume of the brain, cerebrospinal
fluid (CSF), gray and white matter, cortical thickness, surface area,
cell loss, and neuronal shrinkage (for a comprehensive review see
[65]).

The brain reaches its maximum volume in early adolescence,
then it declines steadily and linearly from early through middle
adulthood, with an accelerated rate after 55 years. Around age 71-
80 the whole-brain volume has already dropped by 26% compared
to the volume in children, while, concurrently, the total intracranial
CSF volume increases [61]. Volume decline does not occur to the
same degree in all brain regions: while white matter decrease af-
fects the whole brain, gray matter deterioration mostly affects the
frontal and parietal lobes [63,64].

As SWA results from the synchronization of a large population of
neurons, SWAmodifications may be a result of shrinking in specific
regions and not a consequence of general whole brain atrophy [66].
Several studies demonstrated that neuronal loss in the lateral and
medial prefrontal cortex (PFC) predicted impairment in slow os-
cillations generation and propagation [67,68]. It has been also
shown that prefrontal regions in older individuals have lower
resting metabolic activity compared to the brain of younger sub-
jects [69]. These results are in line with the aforementioned
maximal reduction of slow-wave density and amplitude in frontal
EEG derivations in the elderly [23,26]. Moreover, it has been
demonstrated that neuronal loss in the medial PFC and the middle
frontal gyrus predicts a decrement in SWA amplitude, while den-
sity is correlated with deterioration of the areas surrounding the
lateral fissure [67].

The neuronal loss might also account for the decrement in SS
and Kc. Indeed, spontaneous Kc is considered an expression of slow
oscillations at the level of the neural membrane potential. This link
would explain the lower Kc frequency when d oscillations are
impaired [13,30]. Furthermore, neuronal loss in the hippocampus
predicts the severity of reduction in SS density and duration in
older individuals [27]. As regard to gender differences, a reduction
of PFC volume is more pronounced in men than women [14,66].
These results suggest a gender discrepancy, with reduced SWA and
sleep efficiency in men compared to women [13].

3.3. Hypothalamus and brainstem nuclei: the sleep state switching
process

The switch between sleep and wakefulness is regulated by a
complex network within the brainstem and hypothalamic nuclei.
This system is differentially affected by age on many levels (for a
comprehensive review see Ref. [70]) In particular, age-related
changes in four areas are responsible for disruptions in circadian
rhythms: the wake-promoting lateral hypothalamic area (LHA) and
the locus coeruleus (LC) help to maintain stable periods of wake-
fulness, while the preoptic area (POA) modulates LHA and LC
function, sending inhibitory input to initiate and maintain sleep
[71]. The hypothalamic suprachiasmatic nucleus (SCN) is the
endogenous clock promoting wakefulness and regulating sleep
[66,72]. Age-related neuronal loss affects these nuclei, disrupting
the balance in sleep and wakefulness. The age-related deterioration
of hypothalamic and brainstem nuclei does not occur to the same
extent in all nuclei involved in sleep andwake control. For example,
serotoninergic neurons in the raphe nucleus undergo minimal age-
related changes and do not predict sleep disruptions [70].
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/
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3.3.1. Suprachiasmatic nucleus
The SCN coordinates hormonal and behavioral rhythms as a

circadian pacemaker and is dramatically affected by the aging
process. Modifications involve alterations in neuronal network
functionality, membrane properties, and modifications of constit-
uents in cellular nuclei (for a complete review see Ref. [73]). Post
mortem examinations showed a decrement in SCN volume and cell
number in the elderly [74,75]. Specific neuronal subpopulations are
particularly affected by this shrinking, including those expressing
vasoactive intestinal peptide (VIP). These neurons receive direct
light input from the retina and regulate synchronicity between
endogenous rhythms and the external light-dark cycle [73]. Loss of
VIP-ergic neurons would lead to a lower influence from light to
internal rhythms, loosing circadian control from SCN [72], therefore
inducing modifications in a phase shift, nighttime movements, and
the number of awakenings. Impairment in SCN function also re-
flects a desynchronized melatonin secretion cycle (see paragraph
2.6.1).
3.3.2. Hypothalamic preoptic area
The POA plays a major role in promoting, initiating, and main-

taining sleep. POA is formed by cells expressing inhibitory neuro-
peptide galanin [71] and undergoes a significant decline in aging.
The degree of cell loss in the POA predicts the severity of sleep
fragmentation in older adults [76]. The POA shrinkage results in
abnormalities in overnight sleep consolidation [76].
3.3.3. Lateral hypothalamic area and locus coeruleus
The LHA contains neurons expressing hypocretin and orexin

which connects to other nuclei of the brainstem ascending arousal
system. LHA together with the LC collectively maintains stable
wake states [71]. Both undergo a reduction of their neuronal sub-
populations during the aging process. Elderly individuals show a
10% loss in the number of LHA hypocretin-orexin neurons [77] and
a significant neuronal reduction in LC volume [78]. Deterioration in
these two structures and their interconnection with the POA is
partially responsible for fragmentation and fragility of sleep, higher
frequency arousal, and greater sleepiness during awake states in
the elderly.
3.4. Deterioration of white matter

Aging also causes white matter (WM) deterioration, although
it generally is less marked compared to changes in grey matter.
By age 70-80, the former is decreased by 13%, and the latter 26%
compared to the average volume in children [61]. WM does not
reach its volume plateau until the 4th decade, and only after it
starts declining in volume [61]. This has been confirmed by
studies using diffusion tensor imaging (DTI; [79]). This deteri-
oration can also be seen in investigations of the total length of
myelinated fibers. Thinner fibers, like small collaterals, are more
damaged than thicker, as main axons [80]. Literature reported
how the structural properties of white matter tracts affect the
brain network's ability to synchronizing themselves to produce
SWA [81]. As an example [82], correlated a steeper slope of slow
waves, suggestive with a higher axial diffusivity in major frontal
regions, an indicator of better white matter integrity. SWA
disruptions typical of the elderly may, indeed, be partially
caused by loss of white matter tracts able to maintain higher
cerebral synchronicity during sleep. Furthermore, specific aging
deterioration of the body and splenium of the corpus callosum
predicts the severity of SS frequency decline in the elderly [66].
Please cite this article as: Romanella SM et al., The Sleep Side of Agin
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3.5. Adenosine

Adenosine is a metabolic byproduct that accumulates during
wakefulness. It promotes homeostatic sleep drive, including SWA
after sleep deprivation. Previous studies show a decrease in ho-
meostatic drive and lower homeostatic EEG response in older
subjects, suggesting lower levels of adenosine in elderly subjects.
On the contrary, animal models found higher extracellular adeno-
sine levels in older mice, with a focus on brainstem sleep andwake-
promoting nuclei [83]. This contradiction could be explained by
reduced A1 receptor gene expression and widespread loss of
adenosine A1 receptors in cortical, thalamic, and hippocampal
areas occurring in advanced age [84,85]. This would then result in
the higher extracellular concentration of adenosine, but fewer re-
ceptors able to interact with it, leading to lighter homeostatic sleep
drive and SWA rebound for sleep deprivation.

3.6. Hormones

The sleep process across the life span is affected by age-related
endocrine metabolic alterations. In the next section, we review the
role of three hormones associated with promoting andmaintaining
sleep and we discuss how they are modified by the aging process.

3.6.1. Melatonin
Melatonin plays an important role in sleep regulation controlled

by the SCN via a complex pathway (for a comprehensive review see
Ref. [86]). The endogenous melatonin peak is 2 hours before
habitual bedtime. The aging process attenuates overnight mela-
tonin secretion in older individuals, while diurnal secretion is
similar in elderly and young subjects [15,87,88]. Its overnight
decrement is linked to nocturnal light exposure in the elderly. Light
exposure during the night results in a dose-dependent suppression
of melatonin secretion [86]. By contrast, insufficient daytime light
exposure, often seen in the elderly due to spending most of the
time home, elicits a desynchronization of the melatonin secretion
cycle [89], concurrent with the shift in the sleep-wake cycle.

3.6.2. Growth hormone (GH)
GH functions include control of glucose concentration and cell

reproduction [90]. Normally, GH secretion follows a tight circadian
schedule closely linked to SWS [88]. In aging, a significant reduction
in the GH secretor peak predicts a shorter time spent in N3 [91].

3.6.3. Cortisol
There are age-related alterations in cortisol levels with a rising

trend which is probably linked to less sleep duration and more
awakenings in older individuals [91]. Moreover, variations in
cortisol secretion timing have been demonstrated. Specifically,
there is a delayed shift in cortisol secretion in the elderly compared
to younger subjects. It has been suggested that these age-related
alterations could have a strong relationship with REM sleep. In
this vein, a previous study demonstrates that, with aging, plasma
cortisol levels progressively increase while REM sleep decreases
[88].

4. The relationship between sleep and protein clearance

Several studies showed a strong relationship between sleep
quality and Ab alterations in MCI/AD and healthy elderly subjects
[92e94]. It has been demonstrated that sleep disruptions are,
indeed, a crucial factor affecting the severity of cortical Ab burden
and the levels of phosphorylated tau in the CSF (Fig. 3). In this
paragraph, we review the causal relationship between sleep ab-
normalities, like the aforementioned ones explained in the last
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/



Fig. 3. Bidirectional Link between Sleep, Ab Levels, and MCI/AD Onset. Sleep fragmentation is a key factor that triggers a cascade of pathological processes before clinical onset.
Modifications in brain regions, neurotransmitter levels, and lifestyle due to AD diagnosis and prognosis will then worsen sleep patterns establishing a vicious cycle feeding itself.
OSAS: Obstructive sleep apnea syndrome. SDB: Sleep-disordered breathing. MCI: Mild cognitive impairment. AD: Alzheimer’s Disease.
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paragraph, and Ab plaques, neurofibrillary tangles, and Apolipo-
protein Epsilon (ApoE), the three main hallmarks of AD pathology.

4.1. Amyloid-b and glymphatic system

In a murine animal model-based study [95], discovered that Ab
and other metabolites are cleared during sleep through a peri-
vascular pathway. They called this system the “lymphatic
pathway”. Crucially, these results suggest that at least one physio-
logical function of sleep is the clearance of toxic substances that
build up during daytime activities. Spira and colleagues [93]
recruited 70 older adults in cross-sectional study design (mean
age ¼ 76; range 53 - 91). The authors assessed the Ab burden using
the Pittsburgh Compound B (PiB) positron emission tomography
and found greater Ab burden in the individuals who self-reported
shorter sleep duration and lower sleep quality. Conversely, pa-
tients with narcolepsy have a lower burden of amyloid in the brain
[4].
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To better understand the relationship between sleep, Ab, and
tau protein, Ju and colleagues (2017) examined 17 healthy adults
(age 35 to 65) who reported no sleep or cognitive issues. Actigraphy
was recorded for at least 5 successive nights, after which partici-
pants spent one night in a climate-controlled sleep room. Half of
the subjects were randomly assigned to have their SWS disrupted
by a series of beeps (administered through headphones). This
process was repeated approximately one month later, except that
those who previously had their sleep disrupted were allowed to
sleep through the night uninterrupted, and those who were pre-
viously allowed to sleep through the night had their sleep dis-
rupted. Participants underwent a spinal tap after both nights to
measure the levels of Ab and tau protein in the CSF. The authors
found an approximately 10% increase in Ab following the disrupted
night’s sleep. Participants also consistently reported feeling tired
after having their SWS disrupted, despite they only rarely recalled
being awakened by stimuli.
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The increase in Ab levels might be due to increased production
of Ab by neurons, or decreased clearance of Ab by the lymphatic
system (see Refs. [96,97] for an overview of brain lymphatic). In a
subsequent study [98], administered sodium oxybate -which cau-
ses an increase in SWA- in one group, comparing it with another
group of sleep-deprived subjects and normal sleeping control
participants. They found that sleep deprivation increased Ab levels
through increased overnight Ab production and argued that,
despite lymphatic clearance might contribute to the protective ef-
fects of sleep against AD, changes in Ab production rate indeed have
a major role.

Pase and coworkers [99], followed a cohort of 321 (67 þ/- 5
years old) for 19 years. They found a relation between REM dis-
ruptions and dementia in 32 cases, 24 of which were likely AD.
Although the mechanisms behind the relationship between Ab and
REM are still unclear, disruptions of REM sleep might coincide with
the onset of cognitive impairment. A previous study showed evi-
dence of a relation between REM sleep disruption and Ab levels in
healthy elderly and AD patients [100]. These results may be
mediated by the degeneration of cholinergic transmission within
the brainstem and basal forebrain, which also plays a role in the
regulation of REM sleep. Indeed, in both healthy older adults and
MCI/AD patients, the degree of cortical Ab burden was correlated
with the degree of basal forebrain atrophy [101].
4.2. Tau-associated neurofibrillary tangles (NFTs)

Tau-associated neurofibrillary tangles (NFTs) are formed by
hyperphosphorylation and intercellular aggregation of tau protein
and are the second well-known hallmark of AD [102,103]. Tau pa-
thology has been suggested as the earliest neurodegenerative
feature linked to AD with abnormal tau phosphorylation and ag-
gregation in the locus coeruleus, beginning during early adulthood.
It then spreads into different cortical areas such as dorsal raphe,
tuberomammillary nucleus, parabrachial nucleus, and basal fore-
brain (for a review see Ref. [104]) before Ab burden could even be
detected [100,105e107]. Furthermore, NFTs in the LC are found in
AD patients [108], and later on, phosphorylated tau levels in the CSF
also predict cognitive decline in preclinical and clinical AD [109].
The mediation of the LC between AD and NFTs is strongly linked to
its excitatory role in the cortical ascending arousal system. In
healthy individuals, noradrenergic neurons in the LC inhibits sleep
[110], on the contrary, LC neurons are lost in AD. Interestingly, it has
been shown that the number of LC neurons is correlated with
cognitive decline in a cohort of healthy elderly [111].

NFTs are particularly disrupting considering the hippocampus’s
ability to generate ripples linked to the expression of NREM SS and
SWA, and how these two features have been shown to support
sleep-dependent memory processing [112]. Studies on animals
showed that hippocampal ripples are diminished and less syn-
chronized due to the accumulation of tau in the medial temporal
lobe, therefore changing neural oscillatory pattern [113]. Tau has
been associated with abnormally long hyperpolarized down states
during SWA [114], explaining part of the correlation between CSF
tau levels and SWS drop in patients with AD [100]. Furthermore,
chronic sleep restriction, already known to be a risk factor for
illness progression, impairs hippocampus-dependent memory and
increases insoluble tau, helping NFTs formation [115,116]. Ju and
colleagues [2] reported no increase in tau levels after only one night
of disrupted SWS, whereas they found increased CSF tau levels in
participants reporting poor sleep during several nights. Conversely,
the lymphatic system during sleep promotes tau clearance,
explaining why the elderly with a good sleep quality showed fewer
NFTs at autopsy [117,118].
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4.3. Apolipoprotein epsilon

ApoE is a class of protein essential to combine fats to form li-
poprotein. Lipoproteins are important to preserve and remodel
neuronal membranes. ApoE is polymorphic, with three major al-
leles: ApoE-ε2, ApoE-ε3, and ApoE-ε4. The latter is well known to
be a genetic risk factor for developing AD [119e121]. ApoE-ε4 has
been associated with reduced Ab clearance with consequent
pathological accumulation [122]. Normal cognitive elderly in-
dividuals with the ApoE-ε4 allele have shown a risk for developing
MCI or dementia seven times higher [123]. Sleep disturbances
appear to be linked to ApoE-ε4 in MCI/AD patients, especially
concerning REM decrease [124] and delay in circadian rhythms
[125]. It has also been proposed that increased sleep disturbances
in ApoE-ε4 patients could result from alterations in melatonin
production [126]. Besides, ApoE-ε4 has been associated with an
increased risk of SDB and cognitive impairment in patients with
OSAS [127e129].

While some studies suggested that ε4 allele may be the major
cause of sleep disruptions in elderly people at risk for dementia
[127,130], others stressed that sleep deficits and ApoE genotype
may just amplify each other’s negative effects [131,132]. The debate
on ApoE-ε4 is still open given the fact that some studies showed no
influence [133] or even a protective role of ApoE genotype on sleep
patterns, raising the question of the true nature of this association
[134]. Even though more investigation is required, current theories
propose that better sleep consolidation could attenuate the
increased risk conferred by the ApoE genotype [117,118].

5. The bidirectional link between sleep and Alzheimer’s
disease

As aforementioned, the current concept is that sleep disruptions
accelerate AD pathogenesis by enabling Ab and tau protein accu-
mulation. Because sleep disruption also appears to be among the
earliest observable symptoms of awide range of neurodegenerative
diseases, such as AD, Parkinson’s Disease, and Multiple Sclerosis
[135,136], its function as a biomarker to identify elderly at greater
risk has been suggested [66]. Below we discuss modifications in
sleep patterns, macro and microstructure in MCI and AD, and how
these disruptions predict clinical symptoms and cognitive perfor-
mance in patients. As aforementioned, Fig. 1 illustrates sleep and
brain modifications in healthy and pathological aging.

5.1. Circadian Rhythms

MCI and AD patients show significantly disrupted sleep [137]
and complain about poor sleep more frequently than healthy
elderly (27.6% vs 18.3%; [138]). AD patients tend to spendmore time
awake during the night, due to increased sleep latency and higher
frequency of nocturnal awakenings [139], thus resulting in more
daytime sleepiness and decreased sleep efficiency [104,139]. Severe
sleep fragmentation generally corresponds with the emergence of a
syndrome called sundowning, that is characterized by behavioral
symptoms such as hostility, anxiety, agitation, and confusion
occurring at the end of the day, and has a great impact on cognitive
skills and quality of life [140]. Visual hallucinations during wake-
fulness are also reported by AD patients. However, hallucinations
are reported in one-third of the patients during specific phases of
the sleep-wake cycle. Vivid dreams are also reported, together with
aggressive sleep-related and dream-related behaviors [141].

Even before clinical onset, sleep disturbances have relevance to
the development of cognitive dysfunctions. A previous study in
community-based populations showed a link between delay and
reduction of sleep-wake cycles and the probability of developing
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/



S.M. Romanella et al. / Sleep Medicine xxx (xxxx) xxx 9
dementia [142]. Age-related sleep fragmentation is associated with
a 1.5-fold increased risk of developing dementia in the following 6-
year follow-up period [117,118]. Furthermore, a longitudinal cohort
study showed that sleepiness is related to twice the risk of devel-
oping dementia [143], suggesting that daytime sleepiness is also a
predisposing factor for developing dementia.

It has been argued whether part of these disruptions is caused
by neuronal and synaptic loss occurring in the early clinical stages
of dementia. An earlier study in AD showed that alterations of
sleep-wake cycles are mainly mediated by degeneration of the SNC
[144]. Stopa and colleagues determined that SNC is highly damaged
in AD and that the astrocyte/neuron ratio is an accurate marker of
SNC pathology [144]. Additionally, AD post-mortem studies have
established that neurofibrillary tangles located in the hypothalamic
preoptic area correlate with the severity of fragmented sleep [76].
Tau deposition is also present in the LC and the basal forebrain of
healthy older adults [145]. It has been suggested that tau within
these regions may trigger sleep disruptions years before symp-
tomatic onset, and this may be used as an early diagnostic
biomarker [104].

Changes in CSF melatonin levels are also a major cause of
sleep pattern disruptions in AD patients. It was proposed that
this may be due to modification in suprachiasmatic nucleus
functionality [146], or due to alteration of melatonin secretion
itself [147]. Sleep disruptions may also be linked to changes in
CSF cortisol concentrations. MCI and AD patients show a signif-
icantly higher level of cortisol, strongly correlated with faster
clinical worsening and cognitive decline [148]. Going further,
pathophysiology seems to induce hypothalamic orexin neuro-
degeneration seen in later AD stages with consequences on
sleep-wake rhythms [92]. In MCI and early AD, orexin levels are
higher and predict longer sleep latency, more fragmented sleep,
and shorter REM duration [100]. With disease progression,
orexin levels decrease and are associated with more fragmented
daytime wakefulness [149].
5.2. REM sleep

While REM sleep seems to be relatively preserved in normal
aging, it is significantly reduced in AD patients [150] and charac-
terized by shorter epochs [151]. AD patients also show a delayed
REM sleep onset and a blunted rebound of REM sleep following
selective deprivation [150,152]. It has been suggested that the
specific degeneration of cholinergic neurons transmission in AD
may constitute the basis of REM sleep changes [153]. The degree of
basal forebrain atrophy is correlated with the degree of cortical Ab
burden, not only in MCI and AD patients but also in healthy elderly
individuals [101]. Moreover, there is a general slowing of high-
frequency oscillations in AD patients (for a review [154,155]). This
phenomenon includes an increase in diffuse SWA and q activity not
only duringwakefulness, but also during REM sleep [3,156,157], and
this is larger in temporoparietal and frontal regions [151].

REM sleep can also predict neuropsychological impairment in
older adults and AD patients [100]. It has also been shown that REM
sleep has a role in emotional regulation and mood states. Thus, the
manifestation of hostility, depression anxiety, emotional dysregu-
lation, andmemory retention impairment [158] could be attributed
to poor REM sleep quality.

Therefore, a therapeutic intervention aiming at improving REM
sleep quality is particularly important, due to the influence of REM
sleep on cognition and mood. Cholinesterase inhibitors aimed at
promoting REM sleep quality and duration and their efficacy pre-
dicts the degree of memory improvement in AD patients (see
below; [159]).
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5.3. Slow wave sleep

MCI patients show a decrease in time spent in NREM related to
healthy elderly controls, which already have diminished SWA
during normal aging [160]. NREM sleep progressively decreases
after the onset and during illness progression [161]. Tau and Ab
protein levels measured in CSF predict the degree of reduced SWA
time in AD patients, together with a drop in sleep efficiency and
REM sleep duration [100]. SWA reduction strongly correlates with
Ab accumulation in the medial prefrontal cortex [92], which is one
of the earliest regions damaged by Ab plaques [162]. EEG slowing
also predicts disrupted hippocampal memory consolidation [92].
New studies tried to find an answer to this apparent contradiction,
explaining that SWA decrease may reflect changes in K-complexes.
Following this explanation, <1Hz SWA would not change signifi-
cantly from healthy age-matched subjects and AD patients, as
previously shown.
5.4. Sleep spindles and K-complexes

AD patients show a dramatic reduction, over 40%, in Kc density
compared to healthy elderly controls [163]. Normal aging is asso-
ciated with a decrease in both spontaneous and evoked Kc, while
AD patients present mainly a decrease of spontaneous Kc in the
frontal cortex [150,164]. Lower Kc activity is also correlated with a
lower Mini-Mental State Examination (MMSE) score [163]. AD pa-
tients showed faster mean q frequency in both REM and SWS
during post-learning sleep versus elderly controls. This significant
difference was associated with the better delayed episodic recall,
probably enabling a compensatory mechanism to sustain memory
performance [165]. Similar to the reduction in Kc, various studies
found a significant SS reduction in AD patients compared to healthy
controls [17,150,164], mostly involving fast parietal spindle density
[160]. Results suggest that pathology-related spindle alterations
start in the early stages of the disease, possibly even in preclinical
stages. In support of this theory, MCI patients often show a massive
decrease in SS [166]. This reduction comes with cognitive deteri-
oration in patients with dementia, as with many other specific
disrupted EEG features. The relationship involves mostly fast cen-
tral sleep spindles intensity and impaired immediate episodic recall
in AD patients [167]. It has been suggested that thalamic damage
[168] and disruptions in pathways of memory consolidation be-
tween the hippocampus and neocortical areas may account for
spindle density drop.
5.5. Sleep disordered breathing and AD

Sleep disorders are often co-morbid with neurodegeneration.
Over 60% ofMCI/AD patients are diagnosedwith at least one clinical
sleep disorder, mostly SDB or insomnia, during illness progression
[169]. Importantly, successful treatment of sleep disorders can
delay MCI onset [170] and improves cognitive function when a
patient is already in severe stages of AD [159].

There is a complex interaction between SDB and dementia.
Although previous investigations showed an increased incidence of
OSAS with aging, AD patients are particularly affected, with 40-70%
having five or more apneas and hypopneas per hour of sleep
[171,172]. A diagnosis of SDB is linked with a major risk of devel-
oping dementia [173]. Other studies found that SDB patients had an
85% increased risk to develop AD and MCI [174]. Furthermore, in-
dividuals with sleep apnea convert to MCI and AD more frequently
and also at a younger age [170]. After clinical onset, AD stage, and
SDB severity positively correlate, worsening together during pro-
gression [58].
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After the clinical onset of SDB, AD patients with a diagnosis of
OSAS show sleep with less REM and SWS, and more frequent
awakenings compared to AD patients without OSAS [175]. Frequent
apneas and hypopneas during sleep are associated with deficits in
memory, attention, and executive tasks. Some authors suggested
that cognitive deterioration may be mediated by SDB’s effect on
daytime sleepiness [176]. Alternatively, SDB could also directly
contribute to neuronal dysfunction through hypoxia, or it may be a
consequence of AD-associated neurodegeneration in brainstem
respiratory centers. Possible other explanations involve SDB’s
relation to increasing vascular risk, which is itself an independent
risk factor for AD [177].

6. Sleep treatments in aging and AD

Along these lines, it has been suggested that treating sleep
dysfunctions in young elderly and MCI patients could slow or
prevent the progression of dementia [178]. Consolidating the sleep
quality, increasing total sleep time and SWA have been reported to
decrease the incidence of AD onset in the elderly community
[117,118]. Current pharmacological therapies, such as cholinesterase
inhibitors, hypnotic and antidepressants, can have important side
effects in older individuals, for example impairing alertness,
cognitive skills, and producing psychomotor effects; therefore,
their use must be considered as a last resort (for a review see Ref.
[179,180]). Therefore, the first line of treatment should prioritize a
combination of sleep hygiene intervention and cognitive-
behavioral therapy (CBT; [180]). It has been demonstrated that
both interventions are highly effective and with no negative con-
sequences [180]. Other combination therapies have been proposed,
for example, bright light therapywithmelatonin has been shown to
stabilize the sleep/wake cycle. More recently, the application of
Noninvasive Brain Stimulation, like transcranial electrical stimula-
tion (tES) to manipulate SWS and sleep quality has been proposed
as a promising intervention. In the following section, we will re-
view evidence of innovative sleep therapies, discussing their effi-
cacy in tackling sleep disruptions in healthy elderly and MCI/AD
patients.

6.1. Pharmacological medications

Current pharmacological treatments in sleep disruptions are
effective for transient insomnia and when sleep disruption is sec-
ondary to a pathology (for a comprehensive review see Ref. [181]).
Chronic drug therapies can lead to serious adverse effects and
tolerance development, frequently affecting daytime alertness and
cognitive ability [182]. Pharmacological therapy should be consid-
ered only in situations where a definite medical condition is diag-
nosed, or where the use of the behavioral approach has failed.

6.1.1. Cholinesterase Inhibitors
Memory and vigilance impairments are largely caused by a

disruption in the cholinergic transmission. The concentration of
acetylcholine is high during wakefulness and REM sleep, while it
declines during SWS [183]. It has been shown that the timing of
administration of cholinesterase inhibitors plays a crucial role,
morning administration causes less negative side effects (eg
nightmares; [175,184,185]). While positive modifications in sleep
patterns due to cholinesterase inhibitors are difficult to replicate,
improvement in memory consolidation and clinical global func-
tioning in AD seems to be significant [175,184,185].

6.1.2. Hypnotics, antidepressants, and antipsychotics
Although hypnotics, whether benzodiazepines (eg Triazolam,

Estazolam, Lorazepam, Temazepam, Flurazepam, Quazepam) or
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non-benzodiazepines (eg Zaleplon, Zolpidem, Eszopiclone) are
effective in accelerating sleep onset and prolong overall time
asleep, their side effects can be detrimental. They drasticallymodify
sleepmicroarchitecture andmay cause confusion and ataxia during
awake states. Benzodiazepines may even cause paradoxical effects
in the elderly [157]. Non-benzodiazepines cause fewer negative
side effects but in general, they are not generally recommended,
except in cases of acute and severe insomnia [157].

Sedating antidepressants may be helpful in those clinical situ-
ations where sleep difficulties are caused by depressive symptoms.
On the other hand, some of these drugs (eg Trazodone) have also
been administered in neurodegenerative diseases, such as AD or
Lewy body dementia without characteristic depressive symptoms.
Antidepressants result in higher overall time spent asleep and
greater sleep efficiency, although side effects, such as diurnal
sleepiness and dizziness, must be considered. The first choice an-
tidepressant should be Serotonin Selective Re-uptake inhibitors
(SSRIs) for their relative safety [182], although also Trazodone or
Mirtazapine proved to be effective to treat insomnia [186].

Antipsychotics are usually administered to treat behavioral and
psychiatric manifestations of AD, but they seem to also be effective
on insomnia. Atypical antipsychotics, such as risperidone, olanza-
pine, and quetiapine, should be preferred over typical antipsy-
chotics though, as the latter may cause extrapyramidal effects
[187]. Particular attention should be given to the administration of
particular antipsychotics (eg quetiapine) also due to excessive
diurnal sedation and increase the risk of falling [188].

6.2. Sleep hygiene and cognitive-behavioral therapy

Sleep hygiene is an intervention that manipulates daily habits to
influence sleep quality by preserving a regular sleep/wake schedule
(ie with the same rise time every day and avoiding diurnal nap) and
reducing pre-sleep tension and sleep-onset latency [180]. Sleep
hygiene might be facilitated by creating a non-disruptive sleep
environment. For example, the use of earplugs and “white noise” in
a dark and comfortable temperature room decreases nocturnal
awakenings and arousals [180]. Physical exercise combined with a
healthy diet is also an important contributing factor for efficient
sleep hygiene. Locomotor activity in the daytime activates neuronal
feedback loops in the SCN, and, as a result, the sleep/wake cycle is
regulated [189].

Cognitive-behavioral therapy for insomnia (CBT-I) consists of six
to ten sessions supervised by a trained therapist. CBT-I aims to
change maladaptive behaviors and cognitive beliefs that perpet-
uate insomnia and includes relaxation techniques and tips to
reduce the arousal before bedtime (eg avoiding watching TV, using
smartphones in bed) [180]. Various studies in healthy elderly, MCI,
and early-stage AD patients proved the high efficacy of CBT-I in
improving sleep efficacy, prolonging TST, and shortening sleep-
onset. Importantly, CBT-I results, unlike pharmacotherapy, last at
least 6 months after the end of the treatment [190e192]. However,
further studies need to clarify whether CBT-I is also able to modify
physiological sleep oscillations (eg enhancing SWA) or to regulate
Ab regulation.

6.3. Melatonin

Although melatonin has no negative reactions, it is still unclear
whether its administration causes significant and direct beneficial
effects. Actigraphy, polysomnography, subjective reports, sleep
logs, and clinical observations have been used to investigate mel-
atonin’s effects in both healthy subjects and subjects diagnosed
with AD, with varied results; some studies did not find a significant
improvement, while others found a significant effect of melatonin
g and Alzheimer’s Disease, Sleep Medicine, https://doi.org/10.1016/



S.M. Romanella et al. / Sleep Medicine xxx (xxxx) xxx 11
as a hypnotic and circadian controller, mostly when in combination
with Bright Light Therapy [6,193e196]. Importantly, a significant
slowing in cognitive decline has been found in AD patients when
treated with prolonged-release melatonin [197]. Furthermore,
melatonin seems to protect against several mechanisms of
neuronal death and able to prevent Ab toxicity, an effect probably
linked to its cytoprotective and antioxidant effects (for a review see
Ref. [147]).

6.4. Bright light therapy

Elderly people tend to spend less time exposed to daylight,
aggravating sleep problems. Bright light therapy (BLT) consists of
exposing healthy elderly individuals and patients to light with the
aid of a full spectrum lightbox for a minimum of 30 minutes per
day, preferably during the morning. It has been shown that BLT
results in a reduction in overnight awakenings, increased sleep
consolidation, and increased TST [198]. Moreover, BLT also reduces
daytime sleepiness and increases daytime alertness [198,199]. BLT
efficacy is even greater when circadian rhythms are severely
impaired. The combined administration of BLT and melatonin am-
plifies efficacy in more severely impaired subjects [6] while
showing less improvement in subjects with less severe distur-
bances [200].

6.5. Auditory stimulation

Auditory stimulation is applied overnight during the N3 stage
aiming to enhance <1Hz SWA with the rationale of regulating
hippocampus-dependent memory consolidation and in sleep sta-
bilization. A promising application is auditory closed-loop stimu-
lation, where short auditory stimuli are presented at the same
frequency as endogenous slow oscillations. Ngo and colleagues
[201] used an auditory closed-loop feedback system based on an
adaptive amplitude threshold method, to detect online SWA to
send a brief auditory stimulation (50ms bursts of pink noise). While
white noise has equal power per hertz throughout all frequencies,
the power per hertz in pink noise decreases as the frequency in-
creases, creating a deeper and more balanced sound. The authors
demonstrated a significant increase of SWA, an enhancement of
phase-locked spindle activity during slow oscillations up-state, and
amelioration of memory performance after closed-loop auditory
stimulation. These results were replicated in a subsequent study by
the same group [202] and by other groups that used auditory
closed-loop systems [203e205]. All these studies increased SWA in
young adults during daytime naps, in contrast, Papalambros and
colleagues (2017) tested an automated and adaptive algorithm in 13
older participants (60e84yo) during one night of acoustic stimu-
lation and one night of sham stimulation in random order. Pulses of
pink noise were administered during slow-wave upstate. Promis-
ingly, the authors found an increase in SWA and spindle activity for
the active stimulation intervals compared to sham intervals.
Furthermore, verbal memory was tested before and after sleep and
overnight improvement in word recall was significantly greater
with acoustic stimulation compared to sham and was correlated
with changes in SWA [7].

6.6. Noninvasive brain stimulation

NiBS techniques, such as transcranial magnetic stimulation
(TMS), transcranial alternating current stimulation (tACS), and
oscillatory transcranial direct current stimulation (otDCS), can
improve sleep quality and, in turn, cognitive functioning by pro-
moting sleep-dependent plasticity through themodulation of SWA.
The idea of targeting slow oscillations during sleep is based on the
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long-established relationship between sleep and memory consoli-
dation [112,206]. Two major pieces of evidence provide an insight
into this tight connection. According to the active system consoli-
dation model, during NREM sleep, declarative memory represen-
tations transition from a hippocampus-dependent state to a
hippocampus-independent state [112]. As memories get consoli-
dated in the neocortex through replay, the hippocampus frees
space to encode new memories. SWS, spindles, and Sharp Wave
Ripples (SWRs) play a major role in this consolidation process, as
shown by the disruptive effects of spindles and SWRs blockage on
memory consolidation and retention [207].

At the synaptic level, the synaptic homeostasis hypothesis (SHY)
[208] argues that sleep is a necessary tool to maintain the brain
plastic as it renormalizes the net synaptic strength potentiated by
learning. By preventing the synaptic downscaling (decrease of
strength), sleep deprivation would impair not only memory
consolidation but even subsequent learning. Tangible indirect
biological markers of the disruption of this sleep-wake dependent
homeostatic regulation of synaptic strength are enhanced awake
EEG q activity, cortical excitability, and short-interval intracortical
facilitation (a marker of synaptic strength). These would lead to
deficient long-term potentiation inducibility and, ultimately, to
cognitive impairment, two features that characterize AD pathology
[209]. Despite the different perspectives taken by these theoretical
accounts, both stress the pivotal importance of sleep for memory
functioning, pushing researchers to target sleep to address memory
impairment both in healthy and pathological populations. NiBS
techniques are particularly promising tools as they can be safely
used to directly enhance/disrupt oscillatory activity during sleep
(tES) or to modulate the activity of one cortical area or more
functionally connected regions by changing their excitability (re-
petitive Transcranial Magnetic Stimulation or rTMS).

Transcranial Electrical Stimulation. Two tES protocols seem to be
particularly suitable for sleep modulation: tACS and otDCS. tACS
delivers alternating current that continuously shifts between pos-
itive and negative voltages [210], thus inducing periodic shifts in
the transmembrane potential, alternating depolarizing and hyper-
polarizing effects, therefore, enabling the entrainment of intrinsic
brain oscillations due to its sinusoidal waveform [211,212]. Differ-
ently, transcranial direct current stimulation (tDCS) sends a
monophasic baseline voltage, modulating cortical tissue towards a
subthreshold depolarization and therefore promoting endogenous
oscillations (anodal) or hyperpolarization, suppressing it (cathodal;
[212]. Oscillatory-tDCS combines the rhythmic oscillating current of
tACS while still riding a directional voltage component, as tDCS
creating an anodal or cathodal oscillating stimulation. In particular,
these protocols drive cortical populations to oscillate at the same
natural frequency as the one delivered by the stimulation itself,
with a greater amplitude thanks to the resonance phenomenon.
Marshall and coworkers (2006) administered anodal slow otDCS at
0.75Hz frequency over the prefrontal cortex (PFC) intending to
interact with SWA during the N3 stage in young healthy partici-
pants. The author found a significant increase in d power whichwas
accompanied by a significant increase in declarative memory
retention [10]. Some other attempts implemented innovative NiBS
protocols, like the closed-loop system, to test the relationship be-
tween SWA and memory [8,9]. NiBS during sleep usually requires
the experimenter to start the stimulation after 3-4 minutes of
ongoing EEG typical of N2 or N3. A closed-loop algorithm can
independently start the stimulation when the subject is in N3
[8,9,213]. This algorithm for augmentation of slow-wave sleep first
detects the presence of SWoscillations, computing the mean of the
power spectra of SW. The frequency of sinusoidal wave produced
by tACS is then set to individualized SW frequency mean to match
the stimulation frequency and phase with the natural ongoing SW
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activity. Further developments in transcranial stimulation pro-
tocols, and optimization and personalization of the current
implemented, are necessary to precisely target SWA to study
declarative memory consolidation (for a review of [214]).

Slow frequency otDCS mimicking slow-wave activity has been
tested in older adults during afternoon naps. Westerberg targeted
SWA with a subsequent improvement in word-pair performance
[11], while Ladenbauer enhanced 1Hz oscillations and fast sleep
spindles power, leading to a benefit in a visual memory task [215].
Other studies with slow-wave tACS and otDCS administered over-
night in the elderly failed to replicate the beneficial enhancement
of SWA and memory consolidation [216,217]. Authors found
increased SWA and spindles activity, similar to previous results on
young individuals, but no beneficial effects in the consolidation of
visuospatial and verbal memories [217]. This may be due to crucial
differences in overnight memory consolidation processes between
young and aged individuals or differences in protocols (waveform
of electrical stimulation).

Following a different lead, Marshall and colleagues found that q-
otDCS during REM sleep, instead of NREM, did not affect consoli-
dation, yet causes a significant increase of g power [218]. To date,
during wakefulness, q and g oscillatory activity coupled during
memory encoding/retrieval [219,220], while g activity pre-
dominates during retrieval [221] and may play a role in memory
consolidation during REM. Prominent REM q rhythm coupled with
g have been seen in rodents [222,223] and monkeys [224]. g seems
to promote synaptic plasticity, supported by q [46,47]. Stimulating q
and g during REM may, therefore, help consolidate mnemonic
traces as well as SWS stimulation.

Nonetheless, these promising findings need further studies with
larger numbers of healthy participants and follow-ups, both during
NREM and REM states. Interestingly, recent evidence encourages an
experimental application in neurodegenerative diseases. Ladenba-
uer and colleagues (2017) enrolled 16 MCI amnestic patients in a
crossover design. Patients were asked to sleep for 90 minutes while
electrical stimulation was applied at 0.75 Hz over the prefrontal
cortex. The authors found an enhancement of overall SWA and
spindle power. Moreover, participants showed a significantly
improved visual declarative memory during stimulation as
compared with sham [225]. This study suggests that an individu-
alized protocol may be effective to enhance the performance of
visual declarative memory even in MCI patients.

Repetitive Transcranial Magnetic Stimulation. Compared to tES
protocols, trains of TMS pulses (rTMS) can directly affect cortical
neural plasticity by facilitating or preventing long-term potentia-
tion (LTP) or long-term depression (LTD). This results in longer-
lasting effects, which might help the patient comply with the
treatment and enable off-line interventions. The literature on off-
line rTMS extensively showed its feasibility in the treatment of
several sleep disorders (for a recent review see Ref. [226]).
Although rTMS during wakefulness does not directly elicit slow
oscillations, evidence of endogenous SWA enhancement on the
stimulated region during the subsequent sleep makes offline rTMS
protocols a promising approach for addressing sleep disturbances
in the long-term [227]. This possibility is particularly exciting also
considering the positive effects of rTMS in promoting cognitive
functioning in the elderly [228,229], and improving AD/MCI clinical
outcomes [230,231]. Unfortunately, to the best of our knowledge,
none of the published studies tacking cognitive impairment in AD
or sleep disorder with rTMS included, respectively, an analysis of
the subsequent sleep activity or a pre-post cognitive assessment. As
more insights about the relationship between cognition and sleep
could guide new interventions for AD, future investigations may
further probe this relationship. New research on rTMS protocols in
AD is also desirable to address some important safety concerns.
Please cite this article as: Romanella SM et al., The Sleep Side of Agin
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Although rTMS is considered a safe tool [232], the lack of extensive
knowledge of the biological mechanisms of rTMSmay pose a threat
to the AD population. As an example, basic research evidence
showed that the release of Ab is regulated by the amount of neural
activity [233] and that low-frequency rTMS in AD-transgenic mice
reduces amyloid secretion [234]. This raises doubts about the
applicability of high-frequency rTMS to improve sleep and cogni-
tion in AD. Vice versa, the use of low-frequency rTMS to tackle Ab
deposition (that might also affect sleep quality) is challenged by a
possible cognitive burden.

Differently from tES protocols that are feasible to use during
sleep, rTMS ‘online’ interventions are currently limited by the de-
vice itself. In addition to the possibility of the machine overheating
with prolonged use, rTMS also requires to keep the head in position
for the entire protocol to precise target the region of stimulation.
This requirement makes online rTMS protocols challenging even
during a quiet night of sleep, and can, therefore, be prohibitive for
both people suffering from sleep disorders (eg parasomnias), and
the elderly population that is frequently affected by nocturia.
Moreover, the noise produced by the coil (requiring earplugs/sound
masking) can further disrupt sleep.

Despite these practical limitations that may hold back the
researcher from studying the effects of TMS on the ongoing sleep
oscillatory activity, the scant available evidence supports its online
modulatory effects on SWA in the healthy population. Strong state-
dependent slow oscillations can be elicited by single-pulse [235],
paired-pulse with 100ms inter-stimulus-interval (ISI) [236] and
rTMS delivered during NREM sleep [237]. Importantly, such
response is amplified when delivered on the up-state (global de-
polarization) of the endogenous slow-wave, when the faster
rhythms (spindles, gamma, and hippocampal ripples) are concen-
trated and the hippocampal-neocortex transfer of memories is
thought to occur [238]. However, it is still unclear whether the
externally triggered slow-oscillations could compensate or even
replace the endogenous ones by producing the same beneficial
effects on cognition.

7. Conclusions

In this review, we highlighted how sleep disturbances are a key
factor impacting quality of life and cognition in normal aging, as
well as a risk factor for MCI/AD development and prognosis. Earlier
studies considered sleep abnormalities as a consequence of the
neurodegenerative processes, while recent studies suggest that
sleep degradation emerges in the prodromal phase, acting as both a
risk factor and collateral cause of AD exacerbation. In this frame-
work, finding reliable biomarkers in elderly individuals at risk, such
as specific micro and macro-structural sleep features may poten-
tially slow the progression of MCI to AD. Going further, the strong
link between sleep abnormalities and Ab/Tau protein accumulation
suggests that sleep research might be pivotal in addressing AD
pathogenesis and promoting healthy aging. Sleep research could
guide the creation of rehabilitative and/or cognitive enhancement
interventions to improve the quality of life of healthy elderly, detect
individuals at risk, and even slow disease progression.
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