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Sleep Apnea in Type 2 Diabetes
Jimmy Doumit and Bharati Prasad 

Obstructive sleep apnea (OSA) 
is a common chronic respi-
ratory disorder characterized 

by sleep-induced recurrent upper 
airway collapse. The prevalence of 
symptomatic OSA is estimated to 
be 2–4% in the general population, 
in both children and adults (1,2). 
Pathophysiological consequences of 
upper airway collapse include inter-
mittent hypoxia and sleep fragmen-
tation, resulting in sympathetic acti-
vation, systemic inflammation, and 
oxidative stress. These perturbations 
underlie the increased cardiometabol-
ic morbidity and mortality observed 
in populations with OSA (3,4). OSA 
has been shown to increase the risk 
and severity of type 2 diabetes inde-
pendent of age and obesity. This is 
notable because age and obesity are 
risk factors for both OSA and type 2 
diabetes. There are limited data on the 
relationship of OSA to type 1 diabe-
tes and the cardiometabolic impact of 
OSA in children (5,6). Recent studies 
suggest that treatment of OSA with 
continuous positive airway pressure 
(CPAP) therapy reduces insulin resis-
tance and improves glycemic control 
in patients with prediabetes or type 
2 diabetes. 

This article focuses on the effects 
of OSA and its treatment on glucose 
metabolism in adults with prediabetes 
or type 2 diabetes. Data supporting 
screening, diagnosis, and treatment of 
OSA in patients with prediabetes or 
type 2 diabetes are outlined. Finally, 
the impact of CPAP therapy on dia-
betes care is discussed. 

Insulin Resistance and β-Cell 
Dysfunction in OSA

Mechanisms 
Figure 1 elucidates the biological 
pathways through which OSA leads 
to abnormal glucose homeostasis and 
the clinical conditions of prediabetes 
and type 2 diabetes.

Intermittent hypoxia (IH) in 
animal models has been shown to 
decrease insulin sensitivity (measured 
via glucose tolerance test [GTT]) 
and increase the homeostatic model 
assessment (HOMA) index (7–9). IH 
affects hepatocytes directly, resulting 
in increased cellular glycogen con-
tent and gluconeogenic enzymatic 
activity (9). Prolonged periods of IH 
exposure in mice cause an increase 
in proinf lammatory cytokines 
(interleukin-1β, interleukin-6, and 
macrophage inflammatory protein 
2) and transcription factor nuclear 

■ IN BRIEF Obstructive sleep apnea (OSA) alters glucose metabolism, 
promotes insulin resistance, and is associated with development of type 
2 diabetes. Obesity is a key moderator of the effect of OSA on type 2 
diabetes. However, chronic exposure to intermittent hypoxia and other 
pathophysiological effects of OSA affect glucose metabolism directly, and 
treatment of OSA can improve glucose homeostasis.
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factor-κB (10). Reduction in prolif-
eration and apoptosis of pancreatic 
β-cells and reduced conversion of pro-
insulin to insulin has been observed 
in response to IH in mice (11–13). 
Adipose tissue is also affected by IH, 
with downregulation of adiponectin, 
an insulin-sensitizing hormone, and 
an increase in resistin (14,15). Finally, 
IH has been observed to be associ-
ated with sympathetic activation in 
both animal models and humans 
(16,17). Louis and Punjabi (18) stud-
ied healthy adults under conditions 
of normoxia and after 5 hours of IH 
exposure during wakefulness. IH was 
induced at a rate of 24 per hour, sim-
ulating moderate OSA. Intravenous 
GTT results showed a decrease in 
insulin sensitivity and glucose effec-
tiveness (i.e., blood glucose–induced 
suppression of hepatic glycogenesis 
and increased tissue glucose uptake). 
Sympathetic activation (i.e., increased 
heart variability) by hypoxia was 
also noted, but pancreatic insulin 
secretion and serum cortisol levels 
remained unchanged. 

Sleep fragmentation (SF; elec-
troencephalographic activation in 
response to intrathoracic pressure 
changes against an occluded air-
way and to hypoxia) affects glucose 
homeostasis. SF induced in rodent 
models leads to adiposity, insulin 
resistance, and hyperglycemia via 

increased cortisol and biomark-
ers of inflammation and oxidative 
stress. SF and IH are associated 
with insulin resistance in young 
adults independent of age and obe-
sity (19). Experimentally induced 
SF and reduction in slow-wave (i.e., 
deep) sleep in healthy adults causes 
decline in insulin sensitivity (20,21). 
Similarly, SF in the setting of OSA 
and in patients with type 2 diabetes 
interferes with glucose homeostasis 
(22,23).

Epidemiology
The mechanisms of insulin resistance 
and pancreatic β-cell dysfunction, 
as discussed above, explain the epi-
demiological observations that the 
prevalence of prediabetes and type 
2 diabetes are increased in OSA. 
Most studies have used quantitative 
and validated measures for diabetes 
and OSA, such as fasting glucose or 
GTT and polysomnography, respec-
tively. Interestingly, there is evidence 
to suggest that type 2 diabetes inde-
pendently increases the likelihood 
of sleep-disordered breathing (24), 
possibly through the effects of dia-
betes on the autonomic and central 
nervous system. The prevalence of 
OSA in people with type 2 diabetes 
is variable, and estimates range from 
18% in primary care (25), to 58% in 
an older cohort (24), and as high as 

86% in obese populations with type 
2 diabetes (26). 

OSA, Prediabetes, and Type 2 
Diabetes 
Several cross-sectional studies have 
shown that OSA is associated with 
impaired glucose tolerance indepen-
dent of obesity (27–29), and the 
risk is strongly associated with the 
severity of nocturnal hypoxia (30). A 
longitudinal study of a community- 
dwelling cohort of men without 
diabetes showed that OSA was an 
independent predictor of the de-
velopment of insulin resistance 
(31). Longitudinal cohort studies 
from North America, Europe, and 
Australia found an overall increased 
risk of incident diabetes, particularly 
in moderate to severe OSA (32–35). 
These findings are further supported 
by a recent meta-analysis estimating 
that the risk for incident diabetes 
in the setting of moderate to severe 
OSA was increased by 63% (36). 
However, there is heterogeneity in 
the findings of these longitudinal 
studies when adjusted for confound-
ers, including age, sex, and BMI. 
This suggests that shared risk factors 
are important moderators of the as-
sociation between OSA and type 2 
diabetes and should be considered in 
the clinical evaluation and manage-
ment decisions pertaining to individ-
ual patients. In this regard, emerging 
data suggest that OSA expression in 
rapid eye movement (REM) sleep 
(in which more frequent respiratory 
events and more severe oxygen desat-
uration may be observed) has signifi-
cant effects on insulin resistance and 
glycemic control (37,38).

Effects of OSA on Type 2 
Diabetes

Metabolic Control 
Several cross-sectional studies have 
found a detrimental impact of un-
treated OSA on glycemic control in 
type 2 diabetes (38–41). Aronsohn 
et al. (40) prospectively examined the 
relationship between polysomnogra-
phy-derived apnea hypopnea index 

■ FIGURE 1. Mechanisms of glucose intolerance and type 2 diabetes in OSA.
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(AHI), the gold-standard measure of 
OSA severity, and A1C in 60 people 
with type 2 diabetes. There was a sig-
nificant positive correlation between 
AHI and A1C after controlling for 
multiple confounders. Notably, this 
study reported that the effect size of 
AHI on A1C was greater than that 
of some antidiabetic drugs. In con-
trast, the largest prospective analysis 
of a substudy (Sleep AHEAD [42],  
involving 305 of 5,145 participants 
from 4 of 16 centers) failed to show 
a relationship between AHI derived 
from polysomnography and A1C. 
Only a weak correlation was found 
between fasting glucose and sleep 
efficiency (a measure that is partly 
indicative of sleep fragmentation). 
This study included more obese, old-
er individuals with a longer duration 
of diabetes, which may account for 
the discrepant findings. Tamura et al. 
(43) showed that, although in glu-
cose-intolerant patients AHI predicts 
long-term glucose control measured 
by A1C, lowest oxygen saturation ap-
pears to correlate better with A1C in 
people with type 2 diabetes. Overall, 
these data support the notion that 
OSA, particularly moderate to severe 
OSA, is associated with poorer met-
abolic control in patients with type 
2 diabetes. 

Organ System Dysfunction
OSA leads to increased cardiovascu-
lar disease (CVD). The mechanisms 
underlying vascular dysfunction in 
OSA include sympathetic activation 
and oxidative stress (from inter-
mittent hypoxia, hypercapnia, and 
arousals). These perturbations result 
in reduced production of endothe-
lium-dependent vasodilators such as 
nitric oxide (44). Moreover, OSA is 
associated with a proinflammatory 
and hypercoagulable state—another 
pathway that causes vascular inju-
ry (45). These mechanisms explain 
the observation that OSA severity, 
as indicated by AHI, is significantly 
associated with risk of stroke (odds 
ratio 2.5) in patients with type 2 di-
abetes (46). It should be noted that 

this study included older and obese 
populations with a high prevalence of 
OSA (86%). The independent effects 
of OSA on CVD should be further 
examined in lean and younger popu-
lations with type 2 diabetes.

There are limited empirical data 
regarding acceleration of other organ 
system dysfunction in patients with 
type 2 diabetes as a result of OSA. 
OSA leads to progression of chronic 
kidney disease independently, and 
this effect is compounded in patients 
with diabetes (47). A Japanese study 
evaluated a cohort of ~500 patients 
with type 2 diabetes using nocturnal 
oximetry for IH used as a screening 
test for OSA (48). The researchers 
found that significant nocturnal 
hypoxia (in the range seen in OSA) 
was associated with increased 
prevalence of hypertension, hyper-
lipidemia, microalbuminuria, and 
macroalbuminuria. Notably, this 
association was robust and significant 
after adjustment for confounding fac-
tors only in women. Similar findings 
have been reported in super-obese 
British populations with type 2 dia-
betes, suggesting that this effect is 
independent of obesity (49). A recent 
systematic review and meta-analy-
sis reported a significant association 
between OSA severity and increased 
risk of diabetic kidney disease, with 
an overall odds ratio of 1.73 (50). 

A cross-sectional study of >200 
patients examined the prevalence 
and possible mechanisms of periph-
eral neuropathy in a clinic population 
of people with diabetes, with and 
without OSA. The prevalence of 
peripheral neuropathy, particu-
larly severe neuropathy, was higher 
in patients with OSA. Moreover, 
nitrotyrosine and lipid peroxide lev-
els (biomarkers of nitrosative and 
oxidative stress) were elevated in 
the OSA group and correlated with 
nocturnal hypoxemia (51). Several 
cross-sectional studies from diverse 
populations have demonstrated that 
OSA is associated with increased 
prevalence and severity of ocular 
complications such as retinopathy 

and maculopathy from type 2 diabe-
tes (52–55). Furthermore, Tahrani et 
al. (56) showed that the incidence of 
ocular complications in patients with 
type 2 diabetes and OSA is higher 
than in those without OSA. 

Effects of OSA Treatment on 
Diabetes
Treatment to control the signs and 
symptoms of OSA includes behavior-
al approaches to improving sleep hab-
its and weight control. Both medical 
and surgical weight loss significantly 
reduce the severity of OSA. More re-
cently, weight loss related to lifestyle 
interventions in people with type 2 
diabetes has been shown to signifi-
cantly improve OSA severity (57,58). 
However, it is unclear whether the 
improvement in OSA (as a result of 
weight loss) in these studies had an 
independent effect on control of type 
2 diabetes. Other treatments for OSA 
include ear, nose, and throat or max-
illofacial surgeries with the objective 
of improving the patency of the up-
per airway. In recent years, maxillary 
advancement devices, fitted by ortho-
dontists to cause maxillary protru-
sion, have become increasingly used 
and studied. Data regarding the ef-
fects of these treatment interventions 
for OSA in type 2 diabetes are limited 
and beyond the scope of this review.

CPAP treatment is the first-line 
and most effective treatment for OSA. 
Randomized, placebo-controlled trials 
show that CPAP has a beneficial effect 
on glucose homeostasis in obese and 
nonobese populations with predia-
betes (59,60). In addition, metabolic 
effects of CPAP versus oral placebo 
were recently examined in a random-
ized, controlled study in patients with 
prediabetes (59). CPAP significantly 
improved insulin sensitivity by oral 
GTT and reduced 24-hour blood 
pressure compared to placebo. These 
results are consistent with a previous 
meta-analysis that included only ran-
domized, controlled trials, with a total 
of ~240 patients without type 2 diabe-
tes showing significant improvement 
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in HOMA index with CPAP treat-
ment compared to placebo (61). 

Table 1 summarizes studies pub-
lished in the past 5 years that have 
examined the effects of CPAP treat-
ment on metabolic markers of glucose 
homeostasis in type 2 diabetes (62–
66). For a more detailed discussion, 
including a comprehensive listing of 
all relevant publications, readers are 
referred to focused literature reviews 
and meta-analyses on this topic 
(67–69). 

Although the data regarding 
effects of CPAP treatment on control 
of type 2 diabetes remain limited by 
small sample size or lack of control 
group, it appears that, overall, CPAP 
treatment benefits glucose homeosta-
sis in patients with type 2 diabetes. 
The effect size of CPAP treatment is 
possibly less than that of weight loss 
and oral hypoglycemic agents, but it 
remains clinically significant (70). 
This effect is enhanced with increased 
CPAP adherence and is more marked 
in cases with moderate to severe OSA, 
obesity, and poorly controlled diabe-
tes (60,63,71). The duration of CPAP 
treatment exerts significant influence 
on glucose homeostasis; improve-
ments can be expected to occur after 
3 months of treatment. It is import-
ant to note that the data supporting 
the salutary effects of CPAP on glu-
cose homeostasis are more robust in 
populations with prediabetes than in 
those with type 2 diabetes. This is 

partly because a smaller number of 
studies have addressed this question 
in populations with type 2 diabe-
tes. However, biologically plausible 
explanations for this observation 
include that type 2 diabetes is a more 
advanced form of dysregulated glu-
cose metabolism (irreversible β-cell 
dysfunction) and that patients with 
established type 2 diabetes are more 
likely to be older and to have other 
medical illnesses. These observations 
suggest that interventions to diagnose 
and treat OSA in populations with or 
at risk for type 2 diabetes should be 
instituted early, and compliance with 
treatment should be optimized (38). 

Conclusion
In summary, OSA, via sympathetic 
activation, oxidative stress, inflam-
mation, and neuroendocrine dysreg-
ulation, alters glucose homeostasis, 
including in patients with type 2 
diabetes. Early recognition and in-
terventions for OSA can be expect-
ed to improve insulin sensitivity and 
control of hyperglycemia in many 
patients. Clinicians must remain vig-
ilant for signs and symptoms of OSA 
and monitor compliance with CPAP 
along with weight management, diet 
control, and medication adherence 
in patients with type 2 diabetes. 
Important goals of care that require 
further definition with empirical data 
include duration of treatment, neces-
sary level of CPAP compliance, effect 

of alternate OSA treatments such as 
behavioral and weight loss interven-
tions, and subpopulations with type 
2 diabetes most likely to benefit from 
CPAP treatment. 
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