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OBJECTIVES: This study examined the relationship between newly diagnosed OSA and
incident hospitalized atrial fibrillation (AF) over the subsequent 10 years in a large
arrhythmia-free cohort.

METHODS: Adults referred between 1994 and 2010 to a large academic hospital with suspected
OSA who were arrhythmia-free at the time of the first diagnostic sleep study were included.
Clinical data were linked to provincial health administrative data to define outcome. Cox
regressions were used to investigate the relationship between severity of OSA as measured by
the apnea-hypopnea index (AHI) and degree of nocturnal hypoxemia, and incident hospi-
talized AF.

RESULTS: In total, 8,256 subjects were included in this study. Their median age was 47 years,
62% were men; 28% had an AHI > 30 events per hour, and 6% spent > 30% of sleep time
with oxygen saturation < 90%. Over a median follow-up of 10 years (interquartile range, 7-
13 years), 173 participants (2.1%) were hospitalized with AF. Controlling for age, sex, alcohol
consumption, smoking status, previous heart failure, COPD, and pulmonary embolism,
nocturnal hypoxemia (but not AHI) was a significant predictor of incident AF: hazard ratio,
2.47 (95% CI, 1.64-3.71). After further controlling for BMI and hypertension, this association
was attenuated but remained significant (hazard ratio, 1.77 [95% CI, 1.15-2.74]).

CONCLUSIONS: In a large arrhythmia-free clinical cohort with suspected OSA, nocturnal
hypoxemia was independently associated with a 77% increased hazard of incident hospi-
talized AF. These findings further support a relationship between OSA, nocturnal hypoxemia,
and new-onset AF, and they may be used to enhance AF prevention in patients with OSA and
severe nocturnal hypoxemia. CHEST 2018; 154(6):1330-1339

KEY WORDS: atrial fibrillation/flutter; prognosis; sleep apnea syndromes

ABBREVIATIONS: AF = atrial fibrillation; AHI = apnea-hypopnea in-
dex; CHF = congestive heart failure; CIF = cumulative incidence
function; HR = hazard ratio; MI = myocardial infarction; PAP =
positive airway pressure; PSG = polysomnography; SaO2 = oxygen
saturation
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Atrial fibrillation (AF) is the most common chronic
arrhythmia in adults, resulting in significant morbidity
and mortality.1 A number of studies have implicated
OSA as a possible independent risk factor for AF.2-4

OSA might predispose to AF through a number of
mechanisms: hypoxemia, hypercapnia, nocturnal
hypertension, oxidative stress, intrathoracic pressure
fluctuations, sympathetic activation, chronic
inflammation, and endothelial dysfunction. All these
factors predispose subjects to electrical and structural
heart remodeling over time.5-8

Supporting a causal link between OSA and AF,
treatment of OSA with CPAP has been found to reduce
the risk of recurrent AF.9,10 However, there is a paucity
of research examining the longitudinal relationship

between OSA and incident AF.11-14 The findings have
been inconsistent, possibly due to variability in the
criteria used to diagnose OSA and the small number of
severe OSA cases included in community-based
studies.

In a large cohort of patients who underwent full night
diagnostic sleep studies, the present study sought to
evaluate the longitudinal relationship between OSA and
incident hospitalized AF. We have previously shown
that sleep-related oxygen desaturation is a stronger
predictor of cardiovascular events and all-cause
mortality than the apnea-hypopnea index (AHI) in this
cohort15; the present study therefore specifically
examined the relationship of OSA, evaluated by using
AHI and degree of nocturnal hypoxemia.

Patients and Methods
Study Design
This historical cohort study was conducted by using clinical and
polysomnographic (PSG) data on all adults referred with suspected
OSA who underwent a first diagnostic sleep study (level 1 PSG) at a
large urban academic hospital (Toronto, Ontario, Canada) between
1994 and 2010. These data were probabilistically linked to provincial
health administrative databases from 1991 to 2015 at the ICES
(details are given in e-Appendix 1).

The ethics committees of all institutions involved (St. Michael’s
Hospital and Sunnybrook Health Sciences Centre) approved the study.

Data Sources
Clinical Data: Information on demographic, clinical, and PSG
characteristics have been consistently collected at St. Michael’s
Hospital sleep laboratory since 1991 (technical specifications for PSG
are provided in e-Appendix 1). Details on the variables collected are
reported elsewhere.15

Provincial Health Administrative Data: Ontario is the most populous
province in Canada, with a population of > 13 million. It has a
universal single-payer health-care system that covers all medically
necessary services, including most of the cost of the different types
of positive airway pressure (PAP) devices (ie, continuous,
autotitrating, and bilevel) that are used to treat sleep apnea through
the Assistive Devices Program. Copies of high-quality administrative
datasets16,17 on publicly funded services including individual-level
information on physician claims, hospitalization, and ED visits are
housed at ICES.18 A description of the ICES datasets is available at
https://datadictionary.ices.on.ca/Applications/DataDictionary/Default.
aspx. The full dataset creation plan is available from the authors upon
request.

Study Population
Individuals who had undergone a first diagnostic sleep study (index
date) during the study period, and who had a diagnosis of OSA
(AHI $ 5 events per hour) or suspected OSA (referred with sleep
apnea but with AHI < 5 events per hour), were extracted from the
St. Michael’s Hospital database. Patients were excluded if they had >
50% central respiratory events, or AHI < 5 events per hour and a
diagnosis of another sleep disorder.15

Individuals with any physician diagnosis of arrhythmia prior to the
index date (since 1991) were excluded. Physician-diagnosed
arrhythmias were defined as: (1) any inpatient hospitalization with
any diagnosis for arrhythmia per International Classification of
Diseases, Ninth Revision, codes (427 except 427.6: atrial fibrillation
and atrial flutter, ventricular fibrillation, cardiac arrest, paroxysmal
tachycardia, and other cardiac arrhythmias [but not premature
beats]) and International Classification of Diseases, Tenth Revision,
codes (I47-49: paroxysmal tachycardia, atrial fibrillation and flutter,
and other cardiac arrhythmias); (2) any outpatient visit with a
physician billing diagnostic code of 427 (arrhythmias, cardiac, other).
We made our definition of prior arrhythmias as all-encompassing as
possible to maximize sensitivity.

Exposure
The exposure of interest was OSA severity based on AHI and
percentage of sleep time spent with oxygen saturation (SaO2) < 90%.

Using AHI, OSA was categorized as mild (AHI of 5-14.9 events per
hour), moderate (AHI of 15-30 events per hour), or severe (AHI >
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30 events per hour).19 Details on the AHI definition20 are given in
e-Appendix 1.

The percentage of sleep time spent with SaO2 < 90% was divided into
quartiles, and severe nocturnal hypoxemia was defined as > 30% of the
sleep time with SaO2 < 90%.21,22 In addition, the apnea-hypopnea
duration (mean and maximum) was considered in secondary analyses.

Outcomes
The study’s primary outcome was time from the index date to first
hospital admission with a diagnosis of AF or atrial flutter. Definition
of AF was based on International Classification of Diseases, Ninth
Revision (427.3), and International Classification of Diseases, Tenth
Revision (I48), codes that were previously validated against
electrocardiograms and medical records associated with
electrocardiograms.23,24

The study’s secondary outcomes were as follows: (1) hospitalization
with the most responsible diagnosis for admission for AF/atrial
flutter; and (2) a composite outcome that included any
hospitalization or ED visit with a diagnosis of AF or atrial flutter.

Study participants were followed up until first hospitalization with AF,
death, or March 31, 2015, whichever occurred first.

Covariates and Risk Factors
The following potential confounders were considered: traditional
cardiovascular risk factors25 such as sex, age, BMI, smoking,
income status, alcohol consumption, and baseline comorbidities
(hypertension, diabetes, COPD, stroke, pulmonary embolism/
infarction, myocardial infarction [MI], and congestive heart
failure [CHF]). Given that information on PAP acceptance, but
not adherence, was available, patients were considered as treated
since the time of their claim for a PAP device in the Assistive
Devices Program26 database from 2000 onward. Demographic
characteristics, BMI, and smoking status were derived from
clinical data, whereas income status, alcohol dependency/
intoxication, and other comorbidities were derived from health
administrative data.

A detailed list and definitions of variables derived from health
administrative data are provided in e-Table 1.

Analyses
Descriptive statistics were used to characterize the study cohort.
Because AF has been shown to be associated with an increased

risk of death,27 death is a competing event (ie, it may preclude
hospitalization for AF or alter the chances to observe it), which
could result in a biased estimate according to the Kaplan-Meier
method.28,29 We therefore estimated the incidence of AF
hospitalizations according to OSA severity by using the
cumulative incidence function, which accounts for the competing
risk of death. Univariate and multivariable Cox regression models
were used to investigate the association between OSA and
incident AF. The results are expressed as hazard ratios (HRs) and
95% CIs.30 The proportional hazards assumptions for each
variable were tested.30,31

Anticipating a relatively small number of AF hospitalizations in the
follow-up time, the number of variables included in the statistical
model was restricted to avoid overfitting. The following known
AF-related risk factors were selected a priori based on literature
review32-34 and expert opinion: age, sex, smoking status, alcohol
dependency/intoxication, previous CHF, COPD, and pulmonary
embolism/infarction. Because there are possible causal
relationships between OSA and hypertension35 and obesity,36

these two factors may be part of the causal pathway between OSA
and AF.37 Thus, including hypertension or BMI in a statistical
model may diminish a true association. To examine this theory,
hypertension, BMI, and receipt of PAP treatment as time-
dependent covariates were added to the model in the secondary
analyses. A priori-defined interactions between exposures and sex
and age were also tested.

In the secondary analyses, to compare with other studies,13,14 the AHI
and sleep time spent with SaO2 < 90% as variables with skewed
distributions for which nonlinearity was observed were natural log-
transformed; they were then used in the regression models as a
continuous variable.

Given a recent finding that central sleep apnea but not OSA was a
predictor of incident AF,12 our main model was refitted on the
subsample of individuals who had central AHI < 5 events per hour.
To exclude the possibility that nocturnal hypoxemia might be a
reflection of underlying cardiopulmonary disease, we also refitted our
main statistical model on the subsample without COPD or CHF at
baseline. Fine and Gray competing-risk regressions were used to
account for the competing risk of death.38

All statistical analyses were performed in the secure environment of
ICES following Ontario privacy standards using R version 2.15.2 (R
Foundation for Statistical Computing; www.r-project.org).

Results

Population Characteristics

Of 10,149 subjects in the original linked cohort,15 a total
of 1,893 (18.7%) individuals were excluded because of a
previous arrhythmia diagnosis, leaving 8,256
arrhythmia-free individuals for inclusion in the present
analyses. Their median age was 47 years, and 62% were
men (Table 1). The median AHI was 15 events per hour
(interquartile range, 6-33 events per hour), with
substantial variability in disease severity: 1,844 (23%)
had no OSA (AHI < 5 events per hour), whereas 2,263

(28%) had severe OSA (AHI > 30 events per hour).
Severe hypoxemia (defined as > 30% of total sleep time
with SaO2 < 90%) was present in 463 (5.6%). Compared
with the original cohort, these arrhythmia-free
individuals were younger, with less severe OSA, and had
fewer comorbidities at baseline.

OSA and Incident Hospitalized AF

Over a median follow-up of 10 years (interquartile
range, 7-13 years), 173 of 8,256 participants (2.1%)
were hospitalized with AF. Those with incident AF
events were older, more likely to be male, have a higher
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TABLE 1 ] Participants’ Characteristics at Baseline: Total Sample and According to Subsequent Hospitalization
With AF/Atrial Flutter

Characteristic Total Sample (N ¼ 8,256)

Hospitalized With AF in Follow-up Time

No (n ¼ 8,083) Yes (n ¼ 173)

Demographic characteristics

Age, median (IQR), y 47 (38-56) 47 (38-56) 63 (53-70)

Male sex 5,122 (62) 4,992 (62) 130 (75)

BMI, median (IQR), kg/m2 28.8 (25.2-33.3) 28.7 (25.2-33.2) 31.5 (27.8-35.7)

SES by income status

Quintile 1 1,622 (20) 1,579 (20) 43 (25)

Quintile 5 2,336 (29) 2,285 (29) 51 (30)

Smoking Status, No. (%)

Current 1,598 (21) 1,563 (21) 35 (23)

Ex 1,408 (19) 1,366 (18) 42 (27)

Never 4,585 (60) 4,507 (61) 78 (50)

Alcohol dependency/intoxication 490 (5.9) 474 (5.9) 16 (9.2)

Prior comorbidities

Hypertension 2,475 (30.0) 2,371 (29.3) 104 (60.1)

Myocardial infarction 156 (1.9) 144 (1.8) 12 (6.9)

Congestive heart failure 163 (2.0) 146 (1.8) 17 (9.8)

Revascularization procedures 167 (2.0) 159 (2.0) 8 (4.6)

Diabetes 984 (11.9) 934 (11.6) 50 (28.9)

Cancer 335 (4.1) 316 (3.9) 19 (11.0)

COPD 805 (9.8) 750 (9.3) 55 (31.8)

Asthma 1,402 (17.0) 1,363 (16.9) 39 (22.5)

Level of comorbidities per ADG category

Low 2,631 (32) 2,595 (32) 36 (21)

Moderate 3,446 (42) 3,380 (42) 66 (38)

High 2,179 (26) 2,108 (26) 71 (41)

OSA-related symptoms

ESS total, 0-24, median (IQR) 8 (5-12) 8 (5-12) 8 (5-11)

Snore, yes 6,792 (88) 6,647 (87) 145 (91)

Witnessed apnea, yes 3,230 (43) 3,161 (43) 69 (47)

Daytime sleep, yes 2,943 (38) 2,852 (38) 91 (58)

Polysomnographic characteristics, median (IQR)

TST, h 5.8 (5.0-6.5) 5.8 (5.0-6.5) 5.1 (4.3-5.9)

Sleep efficiency, % 82.6 (71.1-89.8) 82.8 (71.4-89.9) 72.90 (58.8-83.0)

Total arousal index, events per hour 22.3 (13.5-37.1) 22.2 (13.4-37.0) 29.3 (17.9-44.1)

Total PLMI, events per hour 0.8 (0.0-11.4) 0.8 (0.0-11.2) 7.6 (0.0-30.0)

Total AHI, events per hour 14.9 (5.7-32.9) 14.8 (5.6-32.6) 22.3 (7.8-41.2)

Central AHI, events per hour 0.2 (0.0-1.0) 0.2 (0.0-1.0) 0.4 (0.0-2.8)

Mean SaO2 in TST, % 95.0 (93.6-96.1) 95.0 (93.7-96.1) 93.7 (91.7-94.8)

Percent of TST spent with SaO2 < 90% 0.1 (0.0-2.2) 0.1 (0.0-2.1) 1.9 (0.1-18.6)

Sleep time spent with SaO2 < 90%, min 0.4 (0.0-7.3) 0.3 (0.0-6.9) 5.7 (0.4-49.1)

Data are presented as No. (%), unless otherwise indicated. Numbers may not add to total because of missing values. ADG ¼ aggregated diagnosis groups
(The Johns Hopkins ACG System, Version 10); AF ¼ atrial fibrillation; AHI ¼ apnea-hypopnea index; ESS ¼ Epworth Sleepiness Scale; IQR ¼ interquartile
range; PLMI ¼ periodic leg movement index; SaO2 ¼ oxygen saturation; SES ¼ socioeconomic status; TST ¼ total sleep time.
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BMI, be current or ex-smokers, and have more
comorbidities at baseline (e-Table 2, Table 1). Among
576 individuals (7%) who died during follow-up, 507
died (88%) without being hospitalized with AF, and
69 individuals (12%) died following a hospitalization
for AF. The cumulative incidence of hospitalized AF at
10 years was 3.2% (95% CI, 2.4-4.1) for individuals
with severe OSA (AHI > 30 events per hour) compared
with 1.7% (95% CI, 1.3-2.1) for those without severe
OSA (AHI # 30 events per hour) and 7.8% (95% CI,
5.2-10.4) for individuals with severe hypoxemia
(SaO2 < 90% for >30% of sleep time) compared with
1.7% (95% CI, 1.4-2.1) for those with milder or no
hypoxemia (Figs 1, 2).

In univariate analyses, significant dose-response
relationships were observed between incident
hospitalized AF and our two exposures (Table 2). Severe
OSA (AHI > 30 events per hour) was associated with an
HR of 2.64 (95% CI, 1.67-1.41) compared with no OSA
(AHI < 5 events per hour), whereas severe nocturnal
hypoxemia (SaO2 < 90% for > 30% of the night) was
associated with an HR of 4.76 (95% CI, 3.30-6.87)
compared with milder or no hypoxemia. After
controlling for age, sex, alcohol consumption, smoking
status, previous CHF, COPD, and pulmonary embolism,
the association between AHI > 30 events per hour and
incident AF was no longer statistically insignificant (HR,
1.29 [95% CI, 0.79-2.11]). In contrast, the adjusted
relationship between severe nocturnal hypoxemia and
AF remained significant (HR, 2.47 [95% CI, 1.64-3.71]).
After additionally controlling for hypertension, BMI,
and PAP treatment acceptance, the association was

further attenuated (HR, 1.87 [95% CI, 1.24-2.83]) but
remained significant (Fig 3).

The association between nocturnal oxygen desaturation
and AF was stronger in women compared with men,
and among those aged < 65 years compared with those
aged $ 65 years (P values for interaction < .05).

Results were similar after controlling for the competing
risk of death, limiting the analyses to patients without
COPD or CHF at baseline and to those with central
AHI < 5 events per hour, and for the secondary
outcomes (e-Tables 3-8). Only the obstructive apnea
duration was significantly associated with the primary
outcome in the univariate analysis; this association
became nonsignificant controlling for confounders
(e-Table 9).

Discussion
In a large, clinical, arrhythmia-free cohort of individuals
with suspected OSA, 2.1% of individuals experienced
incident hospitalized AF over a median 10 years of
follow-up. Our incidence rate of 210 per 100,000 person-
years was lower than that previously reported.13,14 This
cohort may have a lower risk for AF because participants
were younger, with lower BMI, and included a smaller
proportion of men. In addition, younger individuals in
Ontario have been shown to be less likely to be
hospitalized for AF than their older counterparts.39

Although both measures of OSA severity (an increase in
AHI and percentage of sleep time spent with oxygen
desaturation) were associated with incident AF in
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Figure 1 – Estimated cumulative incidence of incident hospitalized atrial
fibrillation/flutter and all-cause mortality by severity of obstructive sleep
apnea as measured by the AHI. AHI ¼ apnea-hypopnea index.

0.3

0.2

0.1

0.0

P
ro

ba
bi

lit
y

0 50
Mo
100 150 200

Incident atrial fibrillation/flutter, ≤ 30% of sleep time with SaO2 < 90%
Incident atrial fibrillation/flutter, > 30% of sleep time with SaO2 < 90%
All-cause mortality, ≤ 30% of sleep time with SaO2 < 90%
All-cause mortality, > 30% of sleep time with SaO2 < 90%

Figure 2 – Estimated cumulative incidence of incident hospitalized atrial
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univariate analysis, only nocturnal oxygen desaturation
was independently associated with increased risk of
new-onset AF controlling for confounders. This
outcome suggests that nocturnal hypoxemia could be
a mechanistic link in the relationship between OSA
and AF.

There is growing evidence from animal and human
studies that the pathophysiologic acute and chronic
effects of OSA, which include hypoxemia, predispose to
AF via the electrical and structural remodeling that
occurs over time.5-8 Intermittent hypoxemia may
enhance arrhythmogenesis through shortening of the
effective refractory period,40 increasing catecholamine
sensitivity,41 and causing myocardial structural
changes.42,43

Our nocturnal hypoxemia findings are consistent with
two other clinic-based studies.13,14 Similar to the
study performed by Gami et al,14 nocturnal oxygen
desaturation, but not AHI, was an independent
predictor of subsequent incident hospitalized AF. Our
study and that of Gami et al used the so-called
“Chicago” definition of hypopnea,20 which does not
require oxygen desaturation to define an event. In
contrast, Cadby et al13 found an association between

both AHI and oxygen desaturation with incident
hospitalized AF but used an alternative scoring
criteria to define hypopneas (obstructive events
needed to be associated with a > 3%-4% oxygen
desaturation to be classified as a hypopnea). The
ability of AHI to predict cardiovascular consequences
has been found to improve with an increased degree
of oxygen desaturation required to define
hypopneas.44 Together, these findings underscore the
potential importance of nocturnal hypoxemia in
mediating cardiovascular risk from OSA and raise the
question of whether a more direct measure of
variability and severity of nocturnal hypoxia might be
even more predictive than AHI.

Our findings indicate that nocturnal hypoxemia imparts
a greater risk of incident AF in women than in men, and
in those aged < 65 years compared with those older.
These findings are consistent with those of previous
studies,11,14 suggesting that these groups, who are
typically at somewhat lower risk of AF, might be
especially vulnerable to the effects of OSA and
hypoxemia.

The present study has several potential strengths and
limitations. We used the same PSG scoring criteria over

PerSat 90 > 30%

Age, 56 vs 38 y

Sex: Male vs female

BMI: 33 vs 25 kg/m2

Smoking: Current vs Never

Alcohol dependency: Yes vs No

Hypertension: Yes vs No

CHF: Yes vs No

COPD: Yes vs No

1 2 3 5 7
Hazard ratio

Figure 3 – Results from multivariable Cox regression model presented as standardized hazard ratios (comparing 75th percentile with 25th percentile).
CHF ¼ congestive heart failure; PerSat90 ¼ percentage of sleep time spent with oxygen saturation < 90%.
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time. Our cohort included individuals with a wide range
of OSA severity and a relatively large number of female
subjects. We matched a high percentage of individuals
(89%) to health administrative data, which provided us
with long and near complete follow-up to derive
outcomes. Although health administrative data were
collected retrospectively, clinical data were collected for
research purposes prospectively with standardized
protocols in place. The traditional AF risk factors,
including older age, male sex, obesity, hypertension,
previous COPD, and CHF, were also predictive of
hospitalized AF in the study cohort, lending face validity
to our model.

As with any observational study design, there are
limitations related to availability of data on important
confounders (eg, treatment adherence, left atrial size,
presence of obesity hypoventilation syndrome,
congenital or valvular heart disease). However, it is
well known that adherence to PAP treatment is
generally low.45,46 Furthermore, even assuming a
protective effect of PAP, inability to adjust for PAP
usage would bias our results toward the null. The
generalizability of our findings may be limited by the
single-center study design and use of Ontario
residents only. Our findings are limited to
hospitalized AF, which may represent a different
phenotype of AF compared with asymptomatic and
nonhospitalized AF.

Given the strong association we found between
hypoxemia and incident AF, it is perhaps surprising
that therapeutic supplemental oxygen has not been
found to be as effective as CPAP in reducing BP in
patients with OSA. However, it is by no means clear
that all cardiovascular complications arising from
OSA are brought about by the same mechanisms.47

OSA-related hypertension might be caused more by
sympathetic overactivity than hypoxemia.
Furthermore, it is possible that more severe
hypoxemia is a marker for OSA that is more severe in
other respects, such as greater swings in intrathoracic
pressure, in which case it is unlikely that supplemental
oxygen would be helpful. Finally, we are not

advocating that hypoxemia be targeted therapeutically
with oxygen supplementation. CPAP remains the
gold standard for treating OSA, and the intent of
our study is to indicate those at highest risk of
developing AF.

We cannot exclude the possibility that nocturnal
oxygen desaturation in the patients in our study was
related to underlying cardiopulmonary disease such as
CHF and COPD. However, our cohort was relatively
healthy and young, and the association between
nocturnal hypoxemia and incident AF hospitalization
remained significant, although attenuated, after
controlling for the presence of CHF, COPD, smoking
status, and other comorbidities. When patients with
CHF and COPD were completely excluded from the
analysis, the association remained significant
controlling for age, sex, alcohol consumption,
smoking status, and pulmonary embolism/infarction
but became nonsignificant additionally controlling for
BMI and hypertension. Given our results on the effect
of hypoxemia independent of number and length of
respiratory events, it is possible that nocturnal
hypoxemia increases the risk of AF more in these
groups (synergistic effect) due to the underlying
abnormal cardiac substrate that is already prone to
arrhythmia.

Finally, we had insufficient power to perform subgroup
analyses and to consider all available confounders and
risk factors in our statistical model as well as interaction
terms. Other potential limitations of this cohort are
discussed elsewhere.15

Conclusions
In a large clinical cohort with suspected OSA and free of
any arrhythmias at baseline, severe nocturnal hypoxemia
(SaO2 < 90% for 30% of sleep time) was an independent
predictor of incident hospitalization for AF. These
findings support a relationship between OSA, chronic
nocturnal hypoxemia, and the development of AF, and
may be used to identify those patients with OSA who are
at greatest risk of developing AF.
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