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Obstructive Sleep Apnea and Vascular Diseases
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ABSTRACT

Obstructive sleep apnea (OSA) affects a large proportion of adults, and is as an independent
risk factor for cerebrovascular and cardiovascular disease. The repetitive airway obstruction that
characterizes OSA results in intermittent hypoxia, intrathoracic pressure swings, and sleep frag-
mentation, which in turn lead to sympathetic activation, oxidative stress, inflammation, and en-
dothelial dysfunction. This review outlines the associations between OSA and vascular diseases
and describes basic mechanisms that may be responsible for this association, in both the micro-
and macrocirculation. It also reports on interventional studies that aim to ameliorate OSA and
thereby reduce vascular disease burden. © 2016 American Physiological Society. Compr Phys-

iol 6:1519-1528, 2016.

Introduction

Obstructive sleep apnea (OSA) is a sleep-related breathing
disorder affecting 13% and 6% of adult males and females
in the United States, respectively (92), characterized by
partial or complete collapse of the upper airway during
sleep. The repeated occurrence of obstructive respiratory
events is associated with a predictable pattern of intermittent
hypoxemia/hypercapnia associated with reduced inspiratory
airflow, and an increase in respiratory effort in an attempt
to breathe against an occluded airway. Obstructive events
usually terminate with an arousal allowing the airway to open
and normal gas exchange to be restored. There are a number
of risk factors predisposing to OSA, such as male gender,
older age, menopause in women, and obesity. A variety
of craniofacial and oropharyngeal abnormalities can also
contribute to OSA pathogenesis, including a large neck cir-
cumference, retrognathia or micrognathia, nasal obstruction,
enlarged tonsils/adenoids, macroglossia, and a low-lying soft
palate (26,44, 108, 112). Genetic and environmental factors
may also adversely affect airway size explaining the increased
incidence of sleep apnea in some families or races (112, 132).
Obesity is a particularly strong risk factor; a 10% increase in
weight is associated with a sixfold greater risk of developing
OSA (93).

Numerous studies have established OSA as an inde-
pendent risk factor for hypertension, diabetes, heart fail-
ure, stroke, and mortality (42, 99, 101, 131). Investigation
of the mechanisms linking OSA and vascular complications
have focused on the pathophysiological sequence of events
described above: intermittent hypoxemia, intrathoracic pres-
sure swings resulting from increased respiratory effort, and
sleep fragmentation resulting from repeated arousals, each
of which will be discussed in turn below (Fig. 1). The first-
line treatment for OSA, continuous positive airway pressure
(CPAP), has demonstrated efficacy in improving surrogate
markers of cardiovascular disease, as well as reducing cardio-
vascular morbidity and mortality.
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Possible Mechanisms Linking OSA and
Vascular Complications

Intermittent hypoxia

OSA is characterized by intermittent episodes of either com-
plete (apnea) or partial (hypopnea) breathing cessation for
periods of 10 s or more (5), both of which can lead to tempo-
rary drops in oxyhemoglobin saturation. These drops are more
severe in obese individuals who have lower functional residual
capacity, and therefore reduced oxygen stores during the res-
piratory event (91). Data from both animal and human studies
support links between intermittent hypoxia and its adverse
impact at the tissue level. Intermittent hypoxia increases sys-
temic and vascular inflammation, promotes oxidative stress
by increased production of reactive oxygen species, increases
sympathetic activation (27) and contributes to diverse multior-
gan chronic morbidity and mortality through endothelial dys-
function. Data from observational studies in large population
groups support the role for hypoxemia in the pathogenesis of
OSA comorbidities including cardiovascular, metabolic, and
neurocognitive disease as well as cancer (26,27, 86).

Repeated arousals

Most apneas/hypopneas result in cortical arousal to increase
tone in the upper airway dilator muscles and reestablish
airway patency (19). Fluctuations in ventilation in the form of
cyclic apnea or periodic breathing cause oscillations in blood
gases, and sympathetic nervous system activation. During
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Figure 1

the early period of apnea, blood pressure and heart rate are
decreased; however, as oxygen saturation decreases, blood
pressure, heart rate, and pleural pressure swings increase until
the occurrence of an arousal. The initial decrease in heart rate
has been linked with an increase in parasympathetic activity
as seen in the diving reflex (27,36). Left ventricular stroke
volume is reduced due to the negative intrathoracic pressure
(increased left ventricular afterload) alongside a decrease in
pulmonary venous return (decreased left ventricular preload),
accounting for a decrease in cardiac output. Hypoxia
may influence blood pressure control through a number
of different mechanisms (36). The local vascular effect
of severe hypoxia tends to reduce arterial blood pressure
by vasodilatation. Vasoactive substances derived from the
vascular endothelium including nitric oxide, adenosine and
eicosanoids may be implicated as early mechanisms in
this response.

Arousal from sleep, as a discontinuance of the apnea/
hypopnea, is an important protective mechanism for airway
reopening (19, 32). However, the physiological events that
accompany the arousal response might contribute to the patho-
physiology of the syndrome. The continual repeated arousals
that appear in patients with OSA result in sleep fragmenta-
tion, reduced sleep quality, and diminished amounts of slow
wave and rapid eye-movement sleep (82). Sleep fragmenta-
tion leads to an increase in sympathetic nervous system acti-
vation, causing inflammation, and reduces glucose tolerance,
all of which can contribute to the development of vascular
disease (17,20,52,109,118).

Intrathoracic pressure swings

Forced inspiratory efforts against an occluded airway during
an obstructive event leads to excessive negative intratho-
racic pressure to levels approaching —60 mmHg or even
—80 mmHg. These pressure swings can produce extensive
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shear and wall stresses on intrathoracic blood vessels includ-
ing the aorta, leading to an increased venous return and there-
fore overload of the right ventricle (60). The negative intratho-
racic pressure also leads to an increased transmural pressure
of the left atrium, left ventricle, and aorta, and disrupts
ventricular function resulting in aortic dilation (107). Thus,
these mechanical effects and the contribution of surges in
blood pressure result in diastolic dysfunction, reduced stroke
volume, and cardiac output in accordance with increased left
ventricular preload and afterload. Some studies suggest that
intrathoracic pressure changes in patients with OSA might
play a role in the pathogenesis of aortic dilatation (60).

Sympathetic activation

Acute hypoxemia has been found to cause reflex vasocon-
striction, an increase in heart rate, and activation of the
sympathetic nervous system (27). Muscle sympathetic nerve
traffic is inhibited during the beginning of an obstructive
apnea episode, gradually increases, and is followed by a
strong inhibition during the late phase. These changes in
sympathetic nerve traffic are associated with similar changes
in vascular resistance and may therefore have implications
for the increase in blood pressure observed during the apneic/
hypopneic episodes. The postapneic blood pressure elevation
correlates with the severity of hypoxia during the obstructive
episode.

The surges of sympathetic activity triggered by obstruc-
tive respiratory event are in part due to hypoxia and activa-
tion of carotid and/or aortic chemoreceptors (51). Enhanced
chemoreflex activity could play a role in the pathogene-
sis of chronic sympathoexcitation and hypertension in OSA
(106, 119), a concept which is supported by animal models
demonstrating enhanced chemoreflex responses to chronic
intermittent hypoxia (43). At the conclusion of the obstruc-
tive event, heart rate and blood pressure are both elevated to
reach a peak within the immediate postapneic breaths. Arousal
from sleep, at the third phase of an apneic event, may cause
further peripheral resistance by increasing sympathetic nerve
activity (20). Of note, OSA patients also have increased sym-
pathetic activity during the day, as indicated by microneurog-
raphy and elevated catecholamine levels both in plasma and
urine (18). Indeed, increased and variable heart rate and blood
pressure has been demonstrated in OSA patients compared to
healthy people during wakefulness (20). Morbidity and mor-
tality in patients with heart failure, diabetes, and coronary
artery disease are predicted by the dysfunction of autonomic
cardiovascular regulation, probably by causing cardiac beta-
adrenoreceptor desensitization, myocyte injury and necrosis,
and hypertension. This dysfunction also exists in OSA and
may contribute to cardiovascular disease (20, 37).

The carotid body has been the subject of recent investiga-
tion, due to its role maintaining oxygen homeostasis. Hypoxic
stimulation of the carotid body increases chemosensory
discharge, which in turn elicits reflex sympathetic, cardiovas-
cular, and ventilatory adjustments (87). Chronic intermittent
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hypoxia with OSA can lead to upregulation of vascular
endothelial growth factor, nitric oxide synthase, proinflamma-
tory cytokines, angiotensin-II, and endothelin-1 in the carotid
body; endothelin-1, in particular, has been proposed as a medi-
ator of carotid body chemosensory potentiation induced by
chronic intermittent hypoxia, and thus may contribute to the
resulting hypertension in OSA (53). The carotid body has been
a focus of recent research in OSA due to its potential role in
cardiovascular disease; indeed, some investigators have sug-
gested denervation or surgical removal of the carotid body as
a treatment to resistant hypertension (87, 88).

Inflammation

OSA is associated with systemic inflammation, which is
demonstrated by increased levels of circulating inflamma-
tory biomarkers such as C-reactive protein, leptin, interleukin
(IL)-6, IL-8, tumor necrosis factor-o (TNF-o), intercellular
cell adhesion molecule, vascular endothelial growth factor
(1), and macrophage migration inhibitory factor (3,33). OSA
is considered a chronic low-grade inflammatory disease, sim-
ilar to atherosclerosis, and chronic inflammation is related to
the pathogenesis of cardiovascular diseases. (6,45, 46, 54).
One of the strongest predictors of cardiovascular risk is
c-reactive protein (6, 69, 100), which alongside other inflam-
matory markers such as IL-6 and TNF-a, is correlated with
carotid intima-media thickness in OSA patients (23). Changes
in inflammatory markers are correlated with OSA severity,
suggesting a contribution to the development of atherosclero-
sis in OSA patients (3).

Beyond systemic inflammation, airway inflammation also
exists in OSA and seems to be directly affected through
mechanical stress, snoring-induced airway vibration, and/or
local oxidative stress (1). One study found that airway inflam-
mation, assessed by exhaled IL-8 and TNF-a levels, was
related to proximal airway resistance independently of body
mass index (2). To eliminate possible confounding by obe-
sity, various studies have measured the effect of intermittent
hypoxia in otherwise healthy humans. The results from these
studies consistently show that OSA has an independent effect
on autonomic system, but no definitive results are available
regarding inflammation (1,69, 100). Fourteen nights of exper-
imentally induced intermittent hypoxia in healthy subjects
has been shown to elevate blood pressure and sympathetic
activity, but not systematic inflammatory markers (117).

Oxidative stress

Oxidative stress is defined as a disturbance in the bal-
ance between the production of free radicals and antioxi-
dant defenses (10); this means either a decreased antioxidant
capacity or an overproduction of free radicals, or both, leading
to a state of oxidative stress (5). Free radicals play an impor-
tant role in regulation of signal transduction and cellular func-
tion, but their overproduction can damage lipids, proteins,
and DNA, thus affecting many cellular and physiological
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mechanisms. This can contribute to pathological situations
including cardiovascular disease (5). Oxygen metabolism
during normal cellular respiration generates reactive oxy-
gen species as by-products, and their elimination occurs
through enzymatic and nonenzymatic antioxidant systems,
such as superoxide dismutase, erythropoietin, glutathione,
and thioredoxin (67). When reactive oxygen species gener-
ation exceeds the capacity of antioxidants, oxidative stress
occurs, and causes damage to cells and tissues. When superox-
ide anions react with nitric oxide, an important endothelium-
derived vasodilator, reactive nitrogen species are produced.
Thus, nitric oxide bioavailability decreases and the vasodila-
tor ability of blood vessels is compromised.

In the current literature, numerous studies link oxida-
tive stress with cardiovascular disease in patients with
OSA (5,56, 68,73,96, 133). In OSA, the increasing oxida-
tive stress caused by hypoxia-related free radicals leads to
increased reactive oxygen species production in monocytes
and polymorphonuclear neutrophils, overexpression of adhe-
sion molecules, and cytotoxicity of monocytes. These mecha-
nisms further reduce nitric oxide bioavailability and increase
monocyte and platelet adhesion, thus aiding in the progression
of atherosclerosis and vascular dysfunction (38).

Mitochondrial dysfunction also plays a crucial role in
producing oxidative stress. In OSA, periods of hypoxia are
associated with elevated reactive oxygen species produc-
tion and many of these reactive species are generated in the
mitochondria. Mitochondria are a major source of superox-
ide anions during oxidative phosphorylation (41). Moreover,
there are other sources of reactive oxygen species including
enzymes such as xanthine oxidase, endothelial nitric oxide
synthase, NADPH oxidase, and superoxide dismutase (66).
In a study that exposed mice to 30 days of chronic intermit-
tent hypoxia, fasting plasma insulin was elevated compared to
controls, while the glucose levels were comparable between
the two groups, indicating insulin resistance. Insulin content
was decreased in p-cells exposed to intermittent hypoxia, and
this effect was associated with increased proinsulin levels.
More importantly, glucose-stimulated insulin secretion was
impaired in the mice exposed to intermittent hypoxia. Mito-
chondrial levels of reactive oxygen species were also elevated,
suggesting a potential contribution to the development of type
2 diabetes (67, 123).

Lipid peroxidation, a marker of oxidative stress, is
increased in OSA patients, while treatment with CPAP can
reverse this effect (66). Prior studies have demonstrated
increased levels of thiobarbituric acid (a marker of lipid per-
oxidation), nitrotyrosine, and cyclooxygenase-2 expression in
OSA patients (5,56). Antioxidant capacity is impaired in OSA
patients, in a positive linear relationship with OSA severity
defined by the apnea hypopnea index (22). However, total
antioxidant status before and after sleep has been shown to
be significantly lower in patients with mild/moderate OSA
compared with severe OSA. These results could be explained
by differences between the acute effects of hypoxia, result-
ing from apneic sleep, and chronic oxidative stress that may
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be sustained in severe OSA patients even during the daytime
(58).

Endothelial dysfunction

The endothelium regulates the balance of circulating cells
and mediators involved in tissue metabolism, inflammation
and repair, all of which are impaired in patients with OSA
(76). The endothelium reacts to physiological challenges,
such as stress, alterations in cardiac output, or hypoxemia, and
releases various vasoactive substances including nitric oxide,
and endothelin that regulate vasodilation and vasoconstriction
(25). The endogenous endothelial repair mechanism, compris-
ing bone marrow-derived endothelial progenitor cells, helps
maintain the integrity of the natural blood-tissue barrier in the
face of vascular injury and physiological stress (4). Disrup-
tion of this well-regulated vascular homeostasis is believed to
lead to a sequence of pathological events, including excessive
vasoconstriction, upregulation of adhesion molecules, inflam-
matory cytokine amplification, enhanced lipoprotein oxida-
tion, prothrombotic states, and the formation of atheroscle-
rotic plaque (14,72).

Endothelial dysfunction is a primary contributor to the
development of atherosclerosis (11) and importantly, even
with atherosclerotic changes, endothelial dysfunction has
been shown to be reversible (13). This endothelial damage
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impacts the balance of different endothelium-derived sub-
stances responsible for maintaining vascular tone (110).
Although the origin of the endothelial injury is not well
understood, studies suggest this may be related to intermittent
hypoxemia, which perpetuates the generation of reactive oxy-
gen species and proinflammatory molecules (98). Some of the
mechanisms involved in endothelial dysfunction observed in
OSA patients are the following: oxidative stress, inflamma-
tion, disturbances on circulating endothelial cells, endothelial
progenitor cells and circulating microparticles (98), lipid per-
oxidation (55, 110), endothelial repair capacity (71), hyper-
coagulability, genetics (14), and endothelial cell apoptosis
(Fig. 2) (35).

Flow-mediated dilation (FMD) in the brachial artery,
is considered the standard noninvasive test for the assess-
ment of macrovascular endothelial function and is reduced in
patients with OSA as suggested by the majority of the studies
(Fig. 3) (129). The largest study to date, the Cardiovascular
Health Study component of the Sleep Heart Health Study,
showed a dose-dependent association between OSA severity
and reduced FMD after adjustment for age, gender and race
(89). In contrast, the Framingham Heart Study component
of the Sleep Heart Health Study showed no adjusted associ-
ation between FMD and OSA severity. One reason for this
discrepancy may be that the majority of participants in the
Framingham/Sleep Heart Health Study had mild OSA (63%
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Pathways linking OSA to endothelial dysfunction. t, upregulation; |, downregulation; Angio Il, angiotensin Il

receptor; CRP, C-reactive protein; eNOS, endothelial nitric oxide synthetase; EPCs, endothelial progenitor cells; HIF, hypoxia-
inducible facto; ICAM, intercellular adhesion molecule; IL 6, interleukin 6; IL 8, interleukin 8; NADPH, nicotinamide adenine
dinucleotide phosphate; NF-KB, nuclear factor- kB; RNS, reactive nitrogen species; ROS, reactive oxygen species; TNF, tumor

necrosis factor; VEGF, vascular endothelial growth factor.
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Figure 3  Endothelial function, as measured by flow-mediated dilation

of the brachial artery, is impaired in subjects with OSA, as compared
with control subjects, in a subgroup of subjects younger than 50 years of
age. The box encompasses the 25% to 75% quartiles, and the median is
represented by the horizontal line within the box. The whiskers extend
to the highest and lowest values within the higher and lower limits,
respectively (129).

had an apnea hypopnea index between 5 and 15 events/h) and
therefore may have been less likely to have any significant
hypoxemia (48). In another study, it was shown that OSA
impairs endothelial function in the brachial artery to a simi-
lar degree as type 2 diabetes (130). Interestingly, preliminary
data presented recently, reported that OSA and DM exert a
synergistic detrimental effect on endothelial function (9).

Associations between OSA and
Vascular Disease

Coronary artery disease

There is growing awareness that OSA is related to the devel-
opment and progression of cardiovascular disease, as evi-
denced by the prevalence of OSA being about twofold greater
in patients with coronary artery disease compared to those
without (40). OSA appears in approximately 60% to 70%
of patients with stroke or ischemic heart disease, and is also
significantly associated with all-cause mortality in these con-
ditions (126). Published studies have shown that severe OSA
is associated with an increased risk of fatal and nonfatal car-
diac events, although exact mechanisms remain unclear (70).
It was found that more than 50% of sudden cardiac deaths
in patients with OSA occur during sleep (61). In a subset
of the Multi-Ethnic Study of Atherosclerosis, a prospective
cohort of 2603 participants followed for 8 years, OSA was
associated with coronary artery calcification, a risk factor for
atherosclerosis, after adjustment for confounders including
obesity (63). In a study with hard endpoints (death from any
cause, stroke or transitory ischemic attack, and myocardial
infarction), it was found that sleep-disordered breathing in
patients with coronary artery disease was associated with a
60% to 70% increase in the risk of death and cardiovascular
morbidity during long-term follow-up (83).
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Stroke

Large-scale studies and meta-analyses have established
moderate-to-severe untreated OSA as an independent risk
factor for stroke (28,40, 78, 83, 123), which may be partly
due to the development of atrial fibrillation. Of five studies
with ischemic stroke and OSA (84, 102, 104, 128), only one
did not report the presence of atrial fibrillation (70). Increased
risk of stroke in OSA patients may also be associated with
hypertension and/or changes in cerebral blood flow (105). It
was found that a significant decline in blood flow occurred
in 76% of obstructive hypopneas and in 80% of obstruc-
tive apneas in the central cerebral artery (85). In a study
with 214 patients with ischemic stroke, OSA was identified
as an independent risk factor for atherosclerotic artery dis-
ease, with 42% of patients with OSA having atherosclerotic
lesions—significantly greater than what was observed in non-
OSA patients (31). Another longitudinal study of 166 patients
with stroke found that the presence of moderate-to-severe
OSA was associated with an increased incidence of nonfatal
cardiovascular events (78). Finally, an analysis of the Sleep
Heart Healthy Study found that in a total of 5422 participants
without a history of stroke and untreated for OSA at baseline,
193 ischemic strokes occurred within the median follow-up
time period of 8.7 years (102). In conclusion, OSA is related
with many risk factors pathogenetic for stroke; atheromatosis,
hypertension, and hemodynamic changes during episodes of
apnea, atrial fibrillation, and decreased cerebral flow are con-
tributing. All of them increase risk of stroke, creating a link
between the two situations (128).

Peripheral artery disease

Peripheral arterial disease represents a severe atherosclerotic
event with high mortality risk. Patients with severe peripheral
arterial disease undergoing lower-extremity bypass surgery
(revascularization) have a poor prognosis, with a 5-year mor-
tality of almost 30%, which is mostly caused by cardiac com-
plications (24, 65). The prevalence of OSA in patients with
severe peripheral arterial disease requiring surgery has been
estimated at 85% (121). This percentage is higher than in any
other previously reported population with manifestations of
atherosclerosis, such as studies showing 30% to 58% preva-
lence of OSA in coronary artery disease and 30% to 80%
prevalence in arterial hypertension (12, 128). In another study
that followed 84 patients for a median period of 52 months
following revascularization, it was found that 17 of 39 patients
with OSA (44%), and 6 of 45 patients (13%) without signif-
icant OSA, suffered from major adverse cardiovascular and
cerebrovascular events. After a multivariate analysis, OSA
was a significant independent predictor of events [hazard
ratio (HR) 5.1; 95% confidence interval (CI): 1.9-13.9; P =
0.001] and was associated with poor long-term outcome in
patients with peripheral arterial disease following revascular-
ization (120); however, more studies are warranted to clarify
the relationship between OSA and peripheral arterial disease.
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Microvascular diseases

The literature regarding microvascular endothelial dysfunc-
tion in OSA is more limited than the data on its macrovas-
cular counterpart (89). In a study of 72 participants, although
flow-mediated dilation was impaired in patients with OSA
suggesting endothelial dysfunction of the microvasculature,
no correlation was found between OSA and vascular reactivity
in the skin microcirculation (129). Interestingly there are data
suggesting that OSA and type 2 diabetes have a synergistic
role in endothelial dysfunction (9).

The pathogenesis of microvascular complications in dia-
betes, such as diabetic nephropathy or diabetic peripheral
neuropathy, is similar; hyperglycemia and hypertension are
fundamental to its development, as they promote increased
oxidative and nitrosative stress (30). OSA is also associated
with increased oxidative and nitrosative stress, and patients
with both OSA and type 2 diabetes are at increased risk of
developing microvascular complications (115, 116). In stud-
ies of patients with OSA and type 2 diabetes, OSA has been
identified as an independent risk factor for the development
of both diabetic nephropathy (115) and peripheral neuropathy
(116).

Interventional Studies

The first-line treatment for OSA is CPAP, which eliminates
upper airway collapse during sleep by pneumatically splinting
the upper airway (Fig. 4) (6,45). The majority of studies and
meta-analyses published to date suggest that CPAP therapy
reduces cardiovascular morbidity and mortality in patients
with moderate/severe OSA (103, 127); however, the impact
of CPAP in mild OSA is unclear (111).

CPAP treatment leads to a reduction in 24-h ambula-
tory blood pressure (7, 8), improves resistant hypertension
in OSA patients, and leads to reduced sympathetic nerve acti-
vation. These findings suggest that OSA contributes to blood
pressure elevations partly via sympathetic excitation (57,79).
Hypertension has been consistently shown to increase arte-
rial stiffness and vice versa arterial stiffness contributes to
the development of hypertension (39,94,97). Given the high
prevalence of hypertension in patients with OSA, several

Intermittent

/‘ hypoxia

Recurrent
arousals

\_ Intrathoracic

pressure swings

Upper
airway

x collapse

~
— [ Tcvp |
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CPAP

Figure 4  Intervention of CPAP on OSA pathway. 1, increase; OSA:
obstructive sleep apnea; CPAP, continuous positive airway pressure;
CVD, cardiovascular disease.
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studies have examined the association between OSA and arte-
rial stiffness independently from the effects of hypertension.
Interestingly, these studies proposed that OSA is associated
with increased arterial stiffness independent of blood pres-
sure (95), while numerous studies have reported a favorable
effect of CPAP treatment on arterial stiffness (29,59,64,122).
Additionally, conflicting are the effects of CPAP on systemic
inflammation. The majority of the studies and meta-analyses
show that CPAP therapy reduces cardiovascular morbidity
and inflammation (103, 127). However, in the Multi-Center
Obstructive Sleep Apnea Interventional Cardiovascular trial
recruiting patients with minimally symptomatic OSA, no con-
sistent changes were found in the markers of systemic inflam-
mation (IL-6, IL-10, C-reactive protein, and tumor necrosis
factor) (111).

Several studies have demonstrated that CPAP can reduce
the risk of fatal and not fatal cardiovascular events (47,49,74)
in both middle age and older patients (77), with one
study demonstrating substantial risk reduction particularly in
females (16). Evidence to date suggests that rates of hard end
points, such as stroke or myocardial infarction are reduced in
OSA patients who use CPAP (75) with one study demonstrat-
ing that long-term CPAP treatment in patients with moderate
to severe OSA and ischemic stroke was associated with a
reduction in mortality risk (80).

Although CPAP is markedly efficacious in treating OSA,
suboptimal adherence is a major challenge which limits effec-
tiveness of therapy (21). It is estimated that at least 50% of
patients are use CPAP for under four hours per night (124)
with many patients abandoning therapy within the first 4
weeks of treatment (50). Thus, although observational tri-
als suggest OSA treatment with CPAP reduces cardiovascu-
lar event rates; randomized trials to definitively assess the
effectiveness of CPAP have not yet been completed. Cur-
rently, there are several trials underway that should provide
clearer evidence in the near future (81, 90). The first few
weeks of treatment are crucial to determining long term com-
pliance and studies reinforce the idea that any extra support at
this stage such as behavioral interventions (frequent contact
and follow-up with the health care provider, intensive patient
support and reinforcement, cognitive behavioral therapy) and
education will have a positive impact on compliance (125).
If patients cannot tolerant CPAP therapy, alternative treat-
ments such as bilevel positive airway pressure, mandibular
advancement devices, and surgical procedures are potential
therapeutic options (15,34,62,108,113,114).

Conclusions

The role of OSA as an independent risk factor for cardiovas-
cular disease is well established by numerous studies. Mech-
anisms linking OSA with vascular complications include
intermittent hypoxia, intrathoracic swings, repeated arousals,
and sympathetic system activation, mostly via inflammation,
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endothelial dysfunction, and oxidative stress. Intermittent
hypoxia increases systemic and vascular inflammation, pro-
motes oxidative stress by increased production of reactive
oxygen species, and through endothelial dysfunction con-
tributes to diverse multiorgan chronic morbidity and mor-
tality. CPAP is the first-line treatment for OSA and is associ-
ated with improvements in surrogate markers of cardiac risk,
as well as reducing cardiovascular morbidity and mortality.
Randomized trials assessing the impact of CPAP on vascular
outcomes are currently underway.
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