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Abstract
Purpose of Review Obstructive sleep apnea (OSA) is an underdiagnosed illness linked to essential hypertension (HTN), 
resistant hypertension (r-HTN), and cardiovascular disease (CVD). This review provides updates on the epidemiology, 
pathophysiology, and treatments of OSA-associated HTN.
Recent Findings Mild sleep apnea increases the risk for HTN. Eighty-nine percent of young patients aged 18–35 with HTN 
not attributed to secondary causes have underlying OSA. Home sleep studies are noninferior to formal polysomnography 
for OSA diagnosis. Nocturnal oxygen desaturation rate is positively correlated with HTN severity. Gut microbiome neo-
colonization in response to high-fat diet cravings in patients with OSA alters immune function and worsens HTN. Carbonic 
anhydrase inhibitors and probiotics show newfound potential for OSA-associated HTN treatment. OSA recognition improves 
hospital outcomes after a STEMI. Hypoxia-inducible factor (HIF) transcription increases in a dose-dependent manner to 
hypoxia, and HIFs are strongly linked to cancer growth.
Summary OSA and HTN are comorbid conditions with adversely connected pathophysiology including sympathetic hyper-
activity, gut dysbiosis, proinflammation, endothelial damage, rostral fluid shifts, pharyngeal collapse, intravascular fluid 
retention, nocturnal energy expenditure, and metabolic derangements. The dose–response effect of OSA on HTN severity 
challenges blood pressure (BP) control, so those with refractory HTN should be screened for OSA.

Keywords Obstructive sleep apnea (OSA) · Apnea–hypopnea index (AHI) · Sleep-disordered breathing (SDB) · 
Hypertension · Resistant hypertension · Gut dysbiosis

Introduction

OSA is a respiratory condition in which pharyngeal airway col-
lapse causes brief, episodic reductions in intrathoracic airflow 
while sleeping. This results in cyclical oxygen desaturation, 

reflexive sympathetic hyperactivity, frequent microarousals, 
poor sleep quality, and daytime drowsiness [1]. The soporific 
effects of OSA decrease quality of life and increase the risk 
of daytime and workplace accidents. Chronic daytime fatigue 
results in cravings for energy-dense foods, thus increasing the 
risk for obesity, dyslipidemia, diabetes, and metabolic syndrome 
[1]. Patients with OSA are at higher risk for depression, cogni-
tive delay, and mood lability [2]. OSA is associated with numer-
ous cardiovascular derangements, including coronary artery dis-
ease, stroke, arrhythmias, peripheral artery disease, heart failure, 
and HTN [3, 4]. Many patients who suffer from OSA are not 
timely screened and treated, resulting in early onset of prevent-
able cardiovascular disease (CVD) [4]. The critical relationship 
between OSA and HTN is discussed in this review.

Diagnosis

The diagnosis and severity of OSA are based on the 
apnea–hypopnea index (AHI), which reports the number of 
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apneic and/or hypopneic events during one hour of sleep 
[5••]. Apneic events obstruct > 90% of intrathoracic airflow, 
whereas hypopneic events obstruct > 30–90% of intratho-
racic airflow [6]. Both types of events last at least 10 s and 
result in oxygen desaturation of 3% or greater [6]. Mild 
OSA causes an AHI of 5–14 events/h; moderate OSA causes 
15–29 events/h; and severe OSA causes > 30 events/h [7].

OSA should be suspected in patients with daytime  
somnolence, poor sleep habits, partner complaints of snoring,  
obesity, poor quality of life, or failure to achieve BP goals despite 
antihypertensive medication compliance. Leading risk factors 
for OSA are obesity, male sex, and old age. Obesity confers the 
greatest risk, and OSA prevalence is the highest among those 
with BMI > 35 kg/m2 [8]. Obesity is also recognized as a strong 
risk factor for HTN. The effects of OSA on HTN are similar  
to those of obesity on HTN, independently of one another;  
each increase in either BMI by 1 kg/m2 or AHI by 1 event/h 
similarly affects BP [9•]. It has been reported that the female 
sex steroids progesterone and estrogen increase ventilatory drive, 
thus reducing the risk for OSA in women compared to men [10]. 
The aging process reduces carotid chemoreceptor sensitivity, 
decreases lung function efficiency, and dysregulates respiratory  
neuronal circuits [10]. Other chronic medical conditions that 
increase OSA risk include end-stage renal disease (ESRD), 
congestive heart failure (CHF), chronic lung disease, and  
craniofacial abnormalities. In the setting of these risk factors, 
clinical screening identifies patients who should be formally 
tested for OSA.

Screening Surveys

Patient surveys used to screen for OSA include the Epworth 
Sleep Scale, the Berlin questionnaire, and the STOP-BANG 
questionnaire. The latter has derivatives unique for Arabic and 
Asian populations [11–14]. Popular among them is the STOP-
BANG questionnaire, which uses eight questions to gather  
subjective (snoring, tiredness, observed apnea) and objective (BP,  
BMI > 35 kg/m2, age > 50 years, neck circumference > 40 cm, 
male gender) data. The survey’s diagnostic sensitivities in 
patients with an AHI > 5 events/h, > 15 events/h, and > 30 events/h  
are 83.6%, 92.9%, and 100%, respectively [11]. Affirmative 
answers to each of the eight questions receive one point, and 
a score > 3 merits a formal sleep study [12]. In all patients with 
OSA, concomitant HTN and adequacy of HTN treatment should 
be frequently investigated. This is particularly important if STOP-
BANG scoring is ≥ 5–8, which is highly correlated with moderate 
to severe OSA and resistant HTN [12].

Polysomnography

Overnight laboratory polysomnography (PSG) is the diag-
nostic gold standard for diagnosing OSA [15]. PSG stud-
ies analyze positional changes and body movements while 

sleeping, electroencephalogram (EEG) activity, respira-
tory rate, quality of breathing, oxygen saturation, BP, chest 
wall movement, and heart rate. Prescriptions for continu-
ous positive airway pressure (CPAP) machines, a mainstay 
of OSA treatment, are based on the data acquired during 
sleep studies. Despite their utility, many temporal, envi-
ronmental, transportation, and financial factors may deter 
patients from making it to the sleep center for their study. 
A recent European assessment of PSG challenges reported 
that the percentage of referred patients who arrived for 
their sleep study declined from 92.5% to only 20% before 
and after the COVID-19 pandemic, respectively [16].

While PSG remains the traditional standard for OSA 
diagnosis, modern home-based sleep tests (HBST) are 
increasing in popularity among both prescribers and 
patients. HBST are more convenient, less invasive and 
nearly half the cost of PSG and the diagnostic sensitivities 
between the two tests are statistically equal [15]. Despite 
this, CPAP prescriptions occur 15% more frequently when 
based on PSG studies, which confers unnecessary treat-
ment costs and inconveniences to patients who would oth-
erwise not require CPAP therapy based on HBST analy-
sis [15]. Hospital quality improvement initiatives aimed 
at reducing the risk of CVD and resistant HTN among 
patients could consider increasing HBST prescriptions in 
lieu of PSG referrals, increasing the likelihood of study 
completion.

Oxygen Desaturation Rate

Oxygen desaturation rate (ODR) identifies patients  
with OSA who are at greatest risk for HTN, and it is a 
relatively novel datapoint acquired during PSG or HBST. 
ODR is defined as the change in the percentage of pulse 
oxyhemoglobin saturation (SpO2) per second after an 
apneic/hypopneic event [17••]. A 2020 clinical trial 
including 102 patients with severe OSA identified that fast 
ODRs correlate with severity of both essential and r-HTN 
[17••]. The study design defined fast ODR as any value 
above the average for all 102 participants, whereas slow 
ODR values were below the overall average. Those with 
faster ODRs (> 0.37) had higher systolic blood pressure 
(SBP) while awake and asleep compared to those with 
slower ODRs (< 0.37) [17••]. The average SBP while 
awake among those with faster ODRs compared to slower 
ODRs was 149.9 ± 18.3 mmHg vs. 131.8 ± 15.6 mmHg, 
and the average SBP while asleep in the same order was 
149.6 ± 19.9 mmHg vs. 128.7 ± 15.6 mmHg; both P < 0.001 
[17••]. Additionally, fast ODR correlated with higher 
short-term BP variance (15.0 ± 4.8 vs. 11.6 ± 3.6 mmHg, 
P < 0.001) and higher prevalence of HTN (74.0% vs. 26.9%, 
P < 0.001) compared to slow ODR [17••].
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Bidirectional and Dose–Response Relationship

OSA and HTN exist in a bidirectional relationship such 
that the presence of one disease increases the risk of the 
other [18]. Patients may not be diagnosed with both at the 
time of clinical assessment, but the discovery of one disease 
merits the investigation of the other. In a 2018 Taiwanese 
study assessing the prevalence of OSA in a cohort of 215 
patients with preexisting HTN, 81.9% were diagnosed with 
new onset OSA [4]. A different study using PSG to observe 
the effects of HTN on sleep characteristics in 304 partici-
pants who had no prior diagnosis of OSA found that HTN 
was associated with decreased sleep efficiency, decreased 
mean and minimum oxygen saturation during apneic epi-
sodes, increased AHI, and increased oxygen desaturation 
index (ODI), which is defined as the number/hour of apneic 
events resulting in reductions in oxygen saturation by ≥ 4% 
from baseline [19]. A 2020 study of 4,500 people with OSA 
identified that merely mild OSA (AHI = 11–15 events/h) 
increased the likelihood of having HTN by 78% when com-
pared to control subjects without OSA (OR = 1.779, 95% CI 
1.403–2.256) [20••].

A dose–response relation between OSA and HTN has 
been previously documented [9•, 21, 22]. The most notable 
study to characterize this dose–response relationship was 
published by Peppard et al. in 2000 [22]. In that study, 709 
patients with OSA were followed for four years to assess the 
incidence of new onset HTN among them. After correction 
for BMI, neck/weight circumference, age, sex, and alcohol/
tobacco use, severity of OSA positively correlated with 
incidence of HTN. Compared to controls with an AHI of 0 
events/h, odds ratios for mild OSA (AHI = 0.1–4.9 events/h), 
moderate OSA (AHI = 5.0–14.9 events/h), and severe OSA 
(AHI ≥ 15 events/h) were 1.42 (95% CI 1.13–1.78), 2.03 
(95% CI 1.29–3.17), and 2.89 (95% CI 1.46–5.64), respec-
tively [22]. The most recent data from a 2018 meta-analysis 
pooling 26 original studies and over 51,000 participants con-
firmed a dose–response relationship between HTN and mild 
OSA (OR = 1.184, 95% CI 1.093–1.274, P < 0.05), moder-
ate OSA (OR = 1.316, 95% CI 1.197–1.433, P < 0.05), and 
severe OSA (OR = 1.561, 95% CI 1.287–1.835, P < 0.05) 
[21].

Epidemiology

HTN is the leading risk factor for CVD, stroke, disability, 
and death, and it affects 31% of the worldwide population 
[23]. Its prevalence among patients with OSA increases to 
42% [24]. The Joint National Committee on High Blood 
Pressure recognized OSA as an identifiable cause of HTN 
in 2003 [25]. Despite the evident link between OSA and 
HTN, it has been estimated that 80% of middle-aged men 

and women with moderate to severe OSA are undiagnosed 
with the condition [26], which is partially attributed to poor 
screening and inconvenience of PSG. Prevalence of OSA is 
estimated to be 9–30% overall, 13–33% in males, 6–19% in 
females, and up to 90% among elderly men [27]. Though 
age is a considerable risk factor for OSA, young patients—
particularly those with HTN of unknown etiology—remain 
susceptible. In a cohort of 593 patients aged 18–35 years 
who were diagnosed with HTN and screened for second-
ary causes without diagnostic findings, 88.9% of them had 
OSA [28••].

OSA is the leading cause of r-HTN [29], which is diag-
nosed when elevated BP persists despite patient compli-
ance with at least three maximally dosed antihypertensive 
medications. R-HTN occurs in 12–15% of all people diag-
nosed with HTN [30], and an astounding 70–83% of people 
with r-HTN also have OSA [31]. R-HTN and OSA have 
also been studied in the presence of kidney disease. A 2012 
study assessing OSA prevalence across various stages of 
renal function found that sleep apnea occurred in 27%, 41%, 
and 57% of patients with either a glomerular filtration rate 
(GFR) > 60 mL/min, chronic kidney disease not on dialysis, 
or ESRD on dialysis, respectively [32]. A separate study in 
2012 identified that the association between r-HTN and OSA 
is the strongest in patients with ESRD compared to those 
with either CKD or normal kidney function [33].

Masked HTN (m-HTN) is defined as elevations in BP 
that are not diagnostic of HTN in the clinical setting despite 
being observed in the home setting via ambulatory BP moni-
toring (ABPM) or one-time at-home monitoring. Home BP 
recordings that meet the criteria for m-HTN are defined as 
BP ≥ 135/85 mmHg, nighttime BP ≥ 120/70 mmHg, or 24-h 
average BP ≥ 130/80 mmHg [34]. Even minor elevations in 
BP observed in the clinic may provide a clue to underly-
ing m-HTN—particularly among patients with OSA. In a 
2008 study of 130 newly diagnosed OSA patients, those with 
OSA were 2.7 times more likely to have m-HTN when clinic 
recordings identified BP > 125/83 mmHg [35]. Of the 130 
patients included in the study, 35.4% had essential HTN, 
30% had m-HTN, and 3.1% had white coat HTN. Collec-
tively, 68.5% of those with OSA had some type of HTN [35], 
which is higher than the ~ 30% prevalence of HTN among 
the general population.

Mechanisms of Disease

The physiological connections between OSA and HTN are 
complex and multifactorial. The pathophysiology begins 
with obstructed airflow into the lungs, which causes tran-
sient hypoxia and hypercapnia (Fig. 1). These repetitive 
blood gas derangements initiate sympathetic overactivity, 
resulting in nocturnal arousals, fragmented sleep, and spikes 
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in BP [36–38]. The initial insult of hypoxia and sympathetic 
overactivity contributes to numerous mechanistic alterations 
that worsen HTN (Fig. 1).

Hypoxia and Sympathetic Nervous Activity

Anoxia is incompatible with life, so the human body is well 
adapted to recognizing and correcting transient and chronic 
hypoxia. When attempted inspiration is interrupted by oro-
pharyngeal obstruction, the negative intrathoracic pressure 
from diaphragmatic contraction is unable to equilibrate 
with atmospheric air pressure. The persistence of negative 
intrathoracic pressure establishes a pathological transmu-
ral pressure gradient with the intravascular compartment. 
Vasodilation occurs in response to this pressure gradient, 
thus lowering intravascular pressure and reducing right atrial 
filling pressure. Vasodilation stimulates endothelial barore-
ceptors to transmit general visceral afferent signals to the 

nucleus tractus solitarius in the ventral medulla. Efferent 
sympathetic nervous activity (SNA) is then increased, result-
ing in increased heart rate, renin-angiotensin activation, and 
increased BP [39].

SNA is closely linked to sleep. Twenty-four-hour uri-
nary catecholamine levels, which are markers of SNA, are 
elevated in correlation with symptoms of OSA including 
increased sleep onset latency, decreased sleep time, and 
decreased sleep efficiency [40]. Although the BP can fluc-
tuate during sleep with OSA, the maximal BP corresponds 
temporally to the moment just prior to the resolution of the 
apneic episode, which suggests an association between the 
two phenomena [41]. In normal sleep physiology, SNA 
decreases during non-REM sleep compared to daytime SNA 
[42••]. Because non-REM sleep accounts for 80% of net 
sleep time, the majority of sleep is appropriately described 
as restful and restorative with low levels of SNA. Pharyngeal 
muscle tone, heart rate, and cardiac output are autonomically 

Fig. 1  The connected pathophysiology of OSA and HTN. The green 
box is the STOP-BANG criteria. Black arrows represent acute physi-
ological occurrences during apneic sleep. Purple arrows represent 

long-term physiological changes that result of chronic OSA. These 
chronic derangements lead to resistant, worsening HTN, which is dis-
played in the red box



Current Hypertension Reports 

1 3

modulated, and they decrease while sleeping due to reduced 
SNA without causing symptoms of pharyngeal collapse, 
bradycardia, or severe hypotension, respectively. In abnor-
mal OSA pathophysiology, nocturnal SNA stimulation dur-
ing apneic events inhibits HR and cardiac output reduction. 
Nocturnal HR, therefore, exhibits less variability compared 
to healthy sleepers. This pathological finding correlates with 
worsening CVD [42••].

The effects of SNA on BP are well understood. Some 
antihypertensive agents function by antagonizing adrenergic 
activity, particularly by blocking beta receptors. SNA pref-
erentially elevates diastolic blood pressure (DPB), whereas 
elevations in SBP are caused by atherosclerotic, noncompli-
ant arteries. Obesity and apneic events particularly stimulate 
SNA, thus increasing morning DBP [9•]. In one study using 
PSG to assess patients who screened positively for OSA, 
elevations in DBP the morning after PSG could be statis-
tically predicted by two variables, AHI (ß = 0.14, 95% CI 
0.04–0.25, P = 0.007) and BMI (ß = 0.21, 95% CI 0.12–0.32, 
P < 0.001) [9•]. In addition to CVD and worsening HTN, 
chronic SNA stimulation while sleeping causes patients  
to experience daytime anxiety with depressive features,  
significant fatigue and cravings for energy-dense foods, thus 
overall reducing patient quality of life.

Non‑dipping Phenomenon

SBP and DBP reduce by ~ 10 mmHg (about 10–20%) dur-
ing slumber, but this dipping phenomenon is reversed in 
those with OSA [35, 43]. The dipping phenomenon occurs 
when lying recumbent partly because lower leg fluid shifts 
in the rostral direction, increasing carotid intravascular fluid 
volume and triggering carotid baroreceptors to reflexively 
reduce SNA, thus causing a nocturnal “dip” in BP. Patients 
with OSA have elevated SNA from the obstructed airway, 
thus antagonizing the natural dipping phenomenon and caus-
ing intravascular pressure elevations. Overtime, the chronic 
HTN leads to sclerotic, noncompliant vasculature, decreased 
endothelial production of vasodilatory nitric oxide, and 
insensitive baroreceptors—further inhibiting the reflex dip-
ping phenomenon. [43–45]. When carotid artery stenting 
places chronic pressure upon the relatively insensitive baro-
receptors of those with chronic OSA, one study found that 
64% of patients converted from a non-dipping BP pattern 
to a dipping BP pattern one year after the procedure [46]. 
A 2018 cross-sectional analysis found a significant associa-
tion between OSA and nocturnal elevations in SBP com-
pared to daytime SBP (non-dipping) (OR = 3.92, 95% CI 
1.31–11.78), and the analysis also revealed that increased 
nocturnal DBP compared to daytime DBP (non-dipping) as 
well as reduced nocturnal DBP dipping (0–10% reduction 
compared to daytime DBP) increased the likelihood of OSA 
by 2.7 and 3.5 times, respectively [47].

Sex Steroids

According to the Wisconsin Sleep Cohort Study, men are 
2–4 times more likely to have OSA compared to women 
[48], and progesterone and estrogen may play an important 
protective role. Sex steroids are neurosteroids that read-
ily cross the blood–brain barrier, where they regulate res-
piratory function by binding to various receptors including 
 GABAA, NDMA, serotonergic receptors, and neurokinin-1 
receptors in the pre-Bötzinger complex [10]. In menstruating 
women, elevated progesterone levels during the luteal phase 
are correlated with hyperventilation and hypocapnia [10], 
thus augmenting the arousal response to transient hypoven-
tilation and hypercapnia associated with apneic episodes. 
The progesterone-mediated effects on respiratory physiology 
occur independent of sex. One study found that male rats 
given synthetic progestin had higher respirations per minute 
compared to untreated male rats [10]. Estrogen increases the 
sensitivity of ventilatory centers [10], reducing the hyper-
capnic threshold at which reflexive hyperventilation occurs. 
In one study, post-menopausal women with reduced estrogen 
levels were three times more likely to have OSA compared 
to pre-menopausal women with higher estrogen levels, and 
those post-menopausal women taking hormone replacement 
therapy (HRT) were four times less likely to have OSA com-
pared to those not receiving HRT [49].

The primary source of estrogen and progesterone in 
women is the gonads (ovaries), whereas in men, only 
about 20% of estrogen and progesterone are produced in 
the gonads (testes). The remaining circulating estrogen and 
progesterone in men are produced via aromatase conversion 
of testosterone in adipose, brain, skin, and bone tissue [50]. 
The precursor for this conversion is testosterone. Because 
the majority of testosterone in men is produced in the gonads 
(testes), a gonadectomy indirectly will reduce estrogen and 
progesterone levels, thus altering respiratory function. In an 
experiment on male rats, respiratory functional response to 
induced hypoxia was reduced following gonadectomy. The 
rats were then supplemented with testosterone in a form 
susceptible to aromatase conversion into estradiol and a 
form unsusceptible to aromatase activity. Only the form of 
testosterone susceptible to aromatase conversion into estra-
diol normalized respiratory functional response to induced 
hypoxia [51].

Metabolic Derangements and the Gut Microbiome

OSA severity is correlated with metabolic syndrome and 
BMI [52], both of which share a correlation with HTN. Gut 
dysbiosis, which occurs commonly in those with metabolic 
syndrome, is a focus of research in many diseases, including  
OSA. Chronic OSA increases nocturnal microarousals and  
energy expenditure, resulting in daytime cravings for energy- 
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dense foods. Many of these palatable foods are high in fat, 
carbohydrates, and salt content, all of which modulate the 
gut microbiome. Neo-colonization of colonic bacteria adapts 
to the dietary habits and chronic hypoxia within the human 
host. The host immune system upregulates in response to 
neo-colonization of foreign microbials within the gut, and 
the immune derangements exacerbate OSA severity [53]. 
These gut microbiome changes exert an endocrine effect on 
neurobiological synapses within the brain by way of the gut-
brain axis, resulting in altered respiratory drive and mood. 
A 2019 study on rats analyzed the effects of comorbid OSA 
and a high-salt diet (HSD), which was used to simulate HTN 
via osmotic water retention. Lactobacillus rhamnosus (GG) 
colonies, which are probiotics that benefit the gut microbi-
ome, were significantly reduced in the rats exposed to apnea 
and HSD [54]. Additionally, blood levels of proinflamma-
tory trimethylamine-oxide and the Th1-related cytokine 
IFN-γ were significantly increased in the rats exposed to 
apnea and HSD [54]. OSA and HSD also reduced blood 
levels of the anti-inflammatory cytokine TGF-β1 [54]. When 
the experimental rats were replenished with Lactobacillus 
rhamnosus (GG) colonies, levels of trimethylamine-oxide 
and the Th-1/Th-2 cytokine imbalance corrected [54].

The hypothesis that administration of prebiotics and 
probiotics alleviates OSA-associated HTN continues to 
be investigated. In a 2018 study on rats exposed to chronic 
intermittent nocturnal hypoxia, researchers observed that 
cecal acetate levels (which has a preventive effect on gut 
inflammation and HTN) were 48% lower in study rats with 
OSA that were not treated with prebiotics and probiotics. 
After administration of Hylon VII (prebiotic) and Clostrid-
ium butyricum (probiotic), both acetate levels and SBP nor-
malized to match those of the control rats [55]. Hylon VII 
is a cornstarch resistant to human brush border enzymatic 
digestion. It therefore provides an available substrate for bac-
terial fermentation into acetic acid, a short chain fatty acid 
(SCFA) that improves barrier function and mucosal integ-
rity of the gastroenteric epithelial lining while also reducing 
activation of neuronal microglia, which are the inflamma-
tory cells of the CNS. The abundance of SCFA-producing 
bacteria was significantly lower in rats with HTN compared 
to normotensive rats, and neuronal microglia activation was 
threefold higher in rats with HTN [55].

Inflammation

Inflammatory mediators are upregulated in OSA secondary 
to chronic hypoxia, endothelial damage, and gut dysbiosis  
[44]. A 2015 meta-analysis of 18 independent studies 
reported that patients with OSA had significantly higher 
inflammatory markers and carotid-femoral pulse wave 

velocities (a measure of arterial stiffness) when compared 
to patients without OSA [44]. Inflammation is upregulated  
in response to hypoxia-inducible factors (HIF), which 
are transcribed in the presence of hypoxia [56]. HIFs are 
strongly associated with cancer progression and metastasis  
[56]. A 2019 study found that elevated transcription of HIF 
increases colorectal carcinoma cell growth in a hypoxia 
dose-dependent manner [56]. OSA-induced endothelial 
damage, which is also elevated in other types of sclerotic 
vascular disease, increases TNF-α transcription [57]. OSA is 
correlated with elevations in other inflammatory mediators, 
including CRP, IL-6, IL-8, ICAM, selectins, and VCAM 
[58]. Anti-inflammatory markers TGF-β and component 
4-binding alpha protein are reduced in OSA [57].

Hyperaldosteronism

The renin-angiotensin aldosterone system (RAAS) is upreg-
ulated secondary to SNA during nocturnal apneic events. 
Hyperaldosteronism correlates with AHI scores, reduced 
oxygen saturation, and elevated nocturnal DBP compared 
to those with normal aldosterone levels in the setting of 
OSA [59, 60]. Aldosterone functions in the distal nephron 
tubules to resorb sodium though epithelial sodium channels, 
which leads to an osmotic hypervolemic state. Aldosterone 
also acts centrally to increase RAAS, oxidative stress, and 
sympathetic drive, thus functioning as a positive feedback 
loop [61]. Intravascular fluid retention widens the transmu-
ral pressure gradient that occurs during nocturnal airway 
obstruction, and it increases lower leg fluid shifts in the 
rostral direction while recumbent. Studies on hypervolemia 
correction in patients with OSA and ESRD reveal that 
accomplishing targeted dry weights during dialysis modali-
ties correlates inversely with OSA severity, and nocturnal 
peritoneal dialysis (NPD) confers better dry weight optimi-
zation compared to hemodialysis [62]. Angiotensin receptor 
blockers (ARBs) are effective at reducing aldosterone effects 
in patients with primary hyperaldosteronism, but comor-
bid OSA challenges this approach. A 2016 study revealed 
that reduction in aldosterone levels after ARB therapy was 
stunted in patients with concomitant OSA, but the stunted 
effect was ameliorated when concomitant CPAP therapy was 
used with the ARB therapy [63]. This same study found 
that CPAP therapy together with ARB therapy also reduced 
sympathetic noradrenaline levels compared to ARB therapy 
alone [63], indicating that the OSA-induced SNA may cause 
hyperaldosteronism resistance to ARB therapy. Because 
OSA confounds hyperaldosteronism, the Endocrine Soci-
ety released a 2016 update to primary hyperaldosteronism 
screening that now includes all patients with concomitant 
HTN and OSA.
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Hypercortisolism

Hypercortisolism, OSA, and obesity are interconnected. 
Obesity, particularly in the setting of OSA, stimulates cor-
tisol production. Adipose tissue generates active cortisol 
from inactive cortisone using 11β-hydroxysteroid dehydro-
genase-1 (11HSD1), which is a bidirectional enzyme that 
also upregulates glucocorticoid receptors and promotes 
adipocyte hypertrophy, thus exacerbating weight gain [64]. 
The location of excess adipose tissue may play a role in cor-
tisol metabolism. Urinary cortisol excretion is higher when 
adipose tissue is centralized to the abdomen as opposed to 
the peripheral body [64]. When glucocorticoid production 
exceeds glucocorticoid receptor availability, these steroid 
hormones begin binding to mineralocorticoid receptors, thus 
acting as aldosterone agonists and favoring fluid retention 
[64].

Hypercortisolism downregulates vasodilators, including 
prostacyclin, kallikrein-kinins, and nitric oxide. Conversely, 
calcium mobilization and myofilament calcium sensitivity 
in cardiac myocytes are upregulated, resulting in long-term 
cardiac remodeling and elevated risk for acute coronary 
syndromes (ACS) [64]. In the general population of people 
without OSA, the most likely time for any person to suffer 
from an acute myocardial infarction is between 6 a.m. and 
11 a.m., which is the time when cortisol levels are the high-
est (in the morning) [65]. Only 7% of people without OSA 
have myocardial infarctions between the hours of midnight 
and 6 a.m. (P = 0.01), whereas 32% of people with OSA 
will experience ACS during these nocturnal hours due to 
pathologically elevated cortisol levels that occur in OSA 
(P = 0.01) [66].

Cardiac Remodeling

Concentric hypertrophy is significantly associated with 
OSA. The odds ratio of concentric left ventricular hypertro-
phy in those with OSA compared to those without OSA is 
1.62 (95% CI 1.27–2.07, P < 0.0001) [67••]. Left ventricular 
mass, wall thickness, and right ventricular area increase as 
oxygen desaturation worsens [68]. Interestingly, moderate 
sleep apnea (AHI = 15–30 events/h) has a lower hazard ratio 
than mild sleep apnea (AHI = 5–15 events/h) with regard 
to cardiovascular disease [69], highlighting the protective 
effect that “ischemic conditioning” plays on cardiovascu-
lar fitness [70]. When the left anterior descending artery 
was occluded in an experiment on rats exposed to chronic 
intermittent hypoxia (CIH) compared to control rats, the rats 
exposed to CIH rats had smaller myocardial infarct size and 
less tachyarrhythmias [71]. The “ischemic conditioning” 
effect is due to neovascularization of collateral vessels in 
response to cardiomyocyte ischemia. Another study in rats 
found that after ACS, capillary density was increased by 

60% in the peri-infarct zone and VEGF was increased by 
134% [72].

Elevated Carbonic Anhydrase Activity

Carbonic anhydrase compensates for respiratory acidosis 
secondary to apnea-related hypercapnia by upregulating 
resorption of bicarbonate in the proximal nephron. Arte-
rial bicarbonate concentration is positively correlated with 
OSA severity independent of HTN [73, 74]. In one 2020 
study on patients with OSA, AHI reductions correlated with 
reductions in venous bicarbonate concentrations (r = 0.66, 
P = 0.013) [75]. Carbonic anhydrase inhibitors perpetuate 
respiratory acidosis during apneic events by eliminating the 
compensatory ability for the kidneys to reabsorb bicarbo-
nate. The lingering acidemia stimulates respiratory drive to 
breathe off the excess carbon dioxide, thus correcting the 
apneic episode and hypercarbia. A 2020 study on partici-
pants with OSA found that acetazolamide (a carbonic anhy-
drase inhibitor which also functions as a weak vasodilator 
via calcium-activated potassium channels) reduces AHI and 
BP with or without concomitant CPAP therapy [75]. This 
identifies carbonic anhydrase inhibitors as a potential front-
line treatment for OSA and associated HTN.

Treatment

The treatment of OSA-associated HTN includes continuous 
positive airway pressure (CPAP), weight loss (with reported 
efficacy matching that of CPAP) [35], diuretics [76], renal 
sympathetic denervation [77], carotid artery stenting [46], 
maxillomandibular advancement devices, hypoglossal nerve 
stimulation [78], surgical operation for restricted airways 
or tonsillar enlargement, and dialysis in those patients with 
ESRD and hypervolemia. While antihypertensive drugs are 
important in BP control for all patients with HTN, those 
in whom OSA is the sole contributor to HTN might ben-
efit from alternative interventions focused on correcting 
nocturnal apneic episodes. Nevertheless, antihypertensive 
agents, particularly ACE inhibitors, show favorable efficacy 
in patients with OSA-associated HTN [79, 80].

CPAP

CPAP delivers continuous, positively pressurized air into the 
distal alveoli of the respiratory tree, which maintains alveo-
lar patency. CPAP reduces arterial stiffness, reduces HTN, 
and improves vascular inflammation in those with OSA 
[81, 82•]. The variable reductions in SBP and DBP range 
from − 2 to − 9 mmHg and − 2 to − 7 mmHg, respectively 
[35, 42••, 62, 83–86]. A reduction in SBP of 2–3 mmHg is 
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associated with a 4–8% mortality reduction [42••]. Those 
prescribed CPAP for OSA are 2.4 times more likely to have 
a nocturnal non-dipping BP pattern when compared to those 
not receiving CPAP therapy for OSA (aOR: 2.4, 95% CI 
1.2–5.1, P = 0.02) [87]. This study also found a significant 
correlation between CPAP usage and reductions in 24-h 
MAP, SBP, and DBP [87]. Best results for quality of life 
improvements and optimal reductions in blood pressure 
occur when CPAP usage exceeds 4 h per night [88, 89]. 
Despite the reported utility of CPAP for OSA, 39–50% of 
patients prescribed nocturnal CPAP for OSA are noncom-
pliant with usage [42••]. One study reported that 63% of 
patients prescribed CPAP reported feeling claustrophobic 
while using the machine [90]. When patients are not adher-
ent to their CPAP prescriptions, there are increased inci-
dence adverse outcomes, including cerebrovascular events 
(HR: 3.1, 95% CI 1.07–15.1, P = 0.041) and hypertensive 
crises (HR: 5.1, 95% CI 2.2–11.6, P = 0.006) [91].

Diuretics

Diuretic therapy reduces the intravascular hypervolemia 
observed in OSA-associated HTN. Diuretics reduce extracellular 
fluid by 10–12% within a few weeks of treatment initiation [76]. 
In a 2014 study of uncontrolled hypertensives with AHI > 20 
events/h, patients received an initial PSG study followed first 
by seven days of low-dose diuretic therapy (2.5 mg metolazone  
and 25  mg spironolactone), then seven days of doubled  
dosages, and finally a repeat PSG study at the end of the trial 
[92]. On repeat PSG compared to initial testing, AHI decreased 
from 57.7 ± 33.0 to 48.5 ± 28.2 events/h (P = 0.005) [92]. Net 
change in lower leg fluid volume reduced from − 418.1 ± 177.5 
to − 307.5 ± 161.9 mL (P < 0.001), and overnight change in  
neck circumference reduced from 1.2 ± 0.6 to 0.7 ± 0.4 cm 
(P < 0.001) [92]. The study found that higher fluid shifts from 
the lower legs to the rostrum during recumbency (indicated by 
greater overnight change in lower leg fluid volume) correlated 
with higher morning SBP. Reduction in overnight change in  
leg fluid volume from the initial PSG to the final PSG was  
positively correlated with the morning change in SBP (r = 0.708, 
P = 0.002) and DBP (r = 0.512, P = 0.043) [92]. In a different 
study on spironolactone in participants with r-HTN and OSA 
with an AHI > 15 events/h, participants received 8 weeks of 
daily 20–25 mg spironolactone therapy, and AHI reduced from 
39.8 ± 19.5 to 22.0 ± 6.8 events/h (P < 0.05) [93]. Weight and 
ABPM were also significantly reduced [93]. In a third study 
of eplerenone for OSA management, three months of therapy 
led to reduced AHI, neck circumference, ABPM, aortic pulse 
waves, and arterial wall stiffness [94]. AHI decreased from 49.5 
events/h (95% CI: 20.1–63.3, P < 0.05) to 28.7 events/h (95% 
CI: 15.7–40.3, P < 0.05) [94].

Conclusions

OSA can surreptitiously contribute to CVD and HTN in the 
absence of clinical suspicion and screening. Earlier OSA 
diagnosis and management confers better outcomes in HTN 
management, morbidity, and mortality. Diagnostic tests for 
OSA are expanding, now including HBST and ODR. Recent 
data shows that shortened sleep duration in those with OSA 
should merit HTN investigation. A study from 2019 identi-
fied that shortened sleep duration of 5–6 h per night in those 
with OSA increases the odds of having HTN by 45% (OR: 
1.45, 95% CI 1.14–1.84), and these odds increase to 80% 
(OR: 1.80, 95% CI 1.33–2.42) when sleep duration is < 5 h 
[95]. The most studied treatment option for symptomatic 
control of OSA is CPAP, though it has variable effects on 
OSA-associated HTN. HTN in those with OSA is responsive 
to antihypertensive therapy, diuretic therapy, nocturnal peri-
toneal or hemodialysis, carbonic anhydrase inhibitors, renal 
artery denervation, probiotics and weight loss. With multiple 
screening options for diagnosis and multiple mechanisms to 
target for treatment, OSA is a manageable disease that war-
rants clinical consideration, particularly due to its morbid 
association with HTN and CVD.

The substantial impact of OSA extends beyond the realm 
of disease. The healthcare market is markedly impacted, too. 
In 2015, OSA and its related outcomes accounted for $12.4 
billion US healthcare dollars among the 5.9 million US adults 
diagnosed with the sleep disorder [96]. The estimated yearly 
expenses related to OSA increase to approximately $49.5 billion  
when the projected ~ 23.5 million Americans undiagnosed with 
OSA are considered [96]. The authors of a 2015 American 
Academy of Sleep Medicine report on OSA healthcare costs 
ranked OSA-associated outcomes by the millions of people 
affected and by the billions of dollars expensed. Mental health 
disease (8.7 million people) was most expensive ($7.1 billion), 
followed by heart disease (3.1 million people; $6.7 billion), 
diabetes (5.6 million people; $6.4 billion), HTN (14.1 million 
people; $5.4 billion), asthma/breathing disorders (5.9 million 
people; $2.6 billion), and insomnia (6.8 million people; $2.1 
billion) [96]. Early recognition and treatment of OSA will 
improve patient outcomes, mitigate healthcare expenses, and 
alleviate the substantial burden of hypertensive disease.
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