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ARTICLE INFO SUMMARY

Article history: Increasing evidence links cognitive-decline and Alzheimer's disease (AD) to various sleep disorders,
Received 2 May 2019 including obstructive sleep apnea (OSA). With increasing age, there are substantial differences in OSA's
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with the development of MCI or AD with symptomatic patients who have a higher likelihood of asso-

Biomarkers ciated disturbed sleep/cognitive-impairment driving these findings. CPAP treatment may be effective in
Amyloid improving cognition in OSA patients with AD. Recent trends demonstrate links between OSA and AD-
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Introduction

Increasing evidence links cognitive decline and Alzheimer's

disease (AD) to various sleep disorders, including obstructive sleep
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Abbreviations
Ap amyloid beta
AD Alzheimer's disease

ADAS-cog Alzheimer's disease assessment scale-cognitive
ADNI Alzheimer's disease neuroimaging initiative
AHI apnea hypopnea index

APOE apolipoprotein e

ARIC atherosclerosis risk in communities
CPAP continuous positive airway pressure
CRP C reactive protein

CSF cerebrospinal fluid

DTI diffused tensor imaging

EDS excessive daytime sleepiness

ELISA enzyme linked immunosorbent assay
IL interleukin

MCI mild cognitive impairment

MrOS the osteoporotic fractures in men
NFT neurofibrillary tangles

NHIS-HEALS national health insurance service-health screening

NOS Newcastle-Ottawa scale

NREM non-rapid eye move movement

OSA obstructive sleep apnea

PET positron emission tomography

PSG polysomnography

PRISMA  preferred reporting items for systematic reviews and

meta-analyses

PROOF prognostic indicator of cardiovascular and
cerebrovascular events

RCT randomized controlled trials

RDI respiratory disturbance index

REM rapid eye movement

SDB sleep disordered breathing

SHHS sleep heart health study

SIMOA single molecule array

SOF study of osteoporotic fractures

SWA slow wave activity

SWS slow wave sleep

TNF tumor necrosis factor

WM white matter

prevalence of OSA irrespective of daytime symptoms in the US is
10% for mild [5] and 4—6.5% for moderate-to-severe [6,7], but in
older adults it is as high as 30—80% [8—10], depending on the
population studied (e.g., community dwelling vs. nursing home) or
how sleep respiratory indices (apnea hypopnea index {AHI3, AHI4
or AHI3a}) and their clinical cut-offs (AHI >5, >15 or >30) are
defined.

OSA in young and middle-aged populations is associated with
excessive daytime sleepiness (EDS) [8,9,11], hypertension [12,13],
coronary heart disease [14—16], congestive heart failure [17], stroke
[18], and multiple inflammatory and metabolic effects [19,20].
Further evidence in these populations supports a link between OSA
and impaired cognitive function, including areas such as attention,
memory and executive function [21—-23]. However, some studies
have shown that the incidence of cognitive impairment, EDS, hy-
pertension and mortality associated with OSA decline with age
[24]. While this may in some cases reflect a survivor bias, it also
potentially suggests that older people with OSA may not suffer from
the same OSA-related consequences seen in the young and middle-
aged. OSA may present distinctly in older populations owing to
several factors, including differences in the underlying risk factors
for OSA (e.g., ventilatory control abnormalities vs. obesity) or to
elements that are reduced in the older population, like the amount
of expression of EDS or the cardiovascular response to arousals
[25-27].

The great disparity in OSA's prevalence, the possibility of vary-
ing comorbidities, and the distinct phenotypic presentation in
young and middle-aged vs. older adults, poses an alluring question
for sleep and aging researchers, which is whether OSA's hetero-
geneity results in varying cognitive outcomes in older adults
compared to middle-aged adults. If so, understanding the rela-
tionship between OSA and risk for AD, as well as appreciating the
heterogeneity of OSA and its outcomes in young and middle-aged
vs. older adults is crucial to better tailor preventive and treat-
ment strategies for AD.

Recent narrative reviews on OSA, cognitive decline and AD
described the cognitive profiles found in association with OSA in
children and adults in general (young, middle-aged and older
adults) [28,29]; explored shared pathophysiological mechanisms
between OSA and AD [30], examined OSA-AD neurobiology and
treatment for a Psychiatry audience; and discussed probable

explanatory mechanisms linking OSA, depression and cognitive
dysfunction [31—33]. Other narrative discussions focused on the
probable explanatory mechanisms linking OSA to dementia as well
as discussions focusing on biomarkers of dementia in OSA [34—36].
Previous systematic and meta-reviews focused on how OSA affects
specific neurocognitive domains, producing inconsistent [37,38]
and sometimes non-conclusive findings [39,40]. The only meta-
review focusing on older adults and cognition reported a small
association between OSA and cognitive dysfunction and suggested
that some specific populations may be more at risk of adverse
cognitive effects [41].

In this systematic review, we examine the link between OSA
with cognitive performance/impairment, subsequent development
of mild cognitive impairment (MCI) or dementia, and AD bio-
markers including effects of continuous positive airway pressure
(CPAP) with a particular focus in characterizing the heterogeneity
of OSA and its cognitive outcomes in distinct clinical groups. We
also explored: 1) possible mechanisms linking OSA as a precipitator
of AD pathogenesis; as well as, 2) AD-type neurodegeneration as a
contributing factor to the emergence of OSA. We systematically
reviewed all clinical and epidemiological evidence. Where findings
were discrepant, we focused on methodological differences among
studies.

Methods
Search strategy

This review was conducted adhering to the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) state-
ment by Moher et al. [42]. A systematic literature search of
bibliographic databases, including PubMed/Medline, Embase,
Psych INFO and Cochrane library for clinical trials, identified all
eligible studies (published prior to May 1st, 2019) that examined
associations between: OSA and cognitive function, OSA and sub-
sequent cognitive decline, and OSA and AD. Our search strategy
utilized the combination of terms characterizing cognitive function,
cognitive impairment or MCI, AD or AD pathology as the dependent
variables; OSA as the independent variable; and a third set of terms
specifying study types, including clinical and epidemiological
studies. Furthermore, we performed a manual search of included
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articles to identify relevant references not identified by the auto-
mated search.

Selection criteria

Eligible studies had to meet the following selection criteria: 1)
be original research investigations examining associations between
OSA and cognition, OSA and cognitive decline, and/or OSA and AD,
including studies examining the effect of CPAP on cognition; 2) be
conducted in human adults; 3) include both healthy controls and
OSA patients with between group comparisons (studies without
controls that conducted within group comparisons based on OSA
severity were also considered); 4) use objective neuropsychological
cognitive tests (in studies examining cognition or cognitive decline
as an outcome); 5) use objective measures of AD (in studies
examining AD or AD pathology as an outcome); and, 6) use poly-
somnography or ‘clinical diagnosis’ for diagnosis of OSA. Seminal
studies examining the effect of CPAP and other interventions on
sleep parameters and cognition in AD patients with OSA were
included. Studies conducted in OSA patients that did not include
relevant cognitive parameters (i.e., executive, motor, verbal,
attention, memory), and those that examined the effects of CPAP
but did not include an examination of OSA vs. control at baseline,
were excluded.

Reviewing procedure and data extraction

Independent examination of all titles and abstracts of identified
eligible studies by the search strategy was performed by two au-
thors (OB and RO) using EndNote X7. Where there were discordant
decisions regarding inclusion, a resolution was reached by two
other authors (AA and AV). Two authors (OB and MH) performed
data extraction for each reference. Extracted fields included au-
thors, year of publication, study design, study population, age,
exposure and outcome assessment, statistical analytic methods
used, covariates, and the main findings of the study. Two other
authors (OU and AT) resolved discrepancy in the information
extracted. Reviewers were not blinded to the authors or in-
stitutions. Fig. 1 shows a summary of the study selection and
retrieval process.

Assessment of study quality

We assessed the quality of included studies in this review, using
an adaptation of the modified version of the Newcastle-Ottawa
scale for quality assessment of observational studies [43], with
addition of new items relevant to this review. Parameters used for
the quality assessment included well-specified hypothesis, study
design type, appropriately described sample, sample size, assess-
ment and definition of OSA, cognitive impairment or AD, statistical
analytic methods used, and approach used to adjust for potential
confounders (see Table S2 in supplementary material). We utilized
a star rating system with increasing number representing
increasing quality, distinguishing low quality (<50% of the
maximum number of stars), medium quality (=55—70% of the
maximum number of stars), and high quality (70% or more of the
maximum number of stars). In general, majority (44 {65%}) of the
studies were considered to be of high quality, 21 (31%) were of
medium quality, and three (4%) were of low quality. Selection bias
related to sampling, measurements of sleep and/or AD solely based
on self-report and insufficient adjustment for core confounders
were the main limitations (See Tables S3-S4 in supplementary
material).

Age classifications

For the purpose of this study, included manuscripts were
stratified by age (mean) of their study population. Young and
middle-aged adults refers to ages 30—60 y; and older adults refers
to ages >60 y.

Strength of association interpretation

Effect sizes from some of the reviewed studies included odds
ratios (OR), hazard ratios (HR), Pearson's correlation coefficient (),
beta estimates () and standardized mean differences (d). For
purposes of interpretation of whether the associations observed
were either weak to strong, we converted the different indices to a
common index (see Table S5 in supplementary material for con-
version formulae) [44]: d = 0.2 was considered a ‘weak’ effect size,
0.5 represents a ‘medium’ effect size and 0.8 a ‘strong’ effect size
[45]. Where effect sizes were absent, an overall qualitative assess-
ment incorporating parameters used for the quality assessment
enabled result comparisons and interpretation between studies.

Results
OSA and cognition (cross-sectional studies)

Young and middle-aged adults

Table 1.1 contains the summary findings from studies that
examined the association between OSA and cognition at a single
time point in young and middle-aged adults. Altogether, there is
substantial evidence suggesting weak to strong associations be-
tween OSA and cognitive performance on some measures of
attention [46—49], memory [46,50—55], reaction time [55,56],
psychomotor vigilance [55,57], information processing speed [49]
and executive function [46,47,49,50,53—55]. Explanations and
plausible mechanisms responsible for these findings in the middle-
aged include daytime sleepiness or drowsiness from fragmented
sleep because of frequent apneic episodes [58—60] and neurolog-
ical damage due to intermittent hypoxia [61,62]. Specifically, defi-
cits of attention and memory may be due to fragmented sleep and
excessive daytime sleepiness [48,63], while motor function, exec-
utive function, reaction time and vigilance may be related to the
severity of hypoxemia [64—66]. For example, in those studies
where middle-aged adults with OSA who complained of EDS were
compared to healthy controls, scores in memory and attention were
consistently lower than normal [48,51,67]. Furthermore, correlation
analysis revealed that EDs correlated with attention while
nocturnal hypoxemia correlated with executive function and
visual-constructive abilities [67]. However, a study that directly
compared the effects of acute intermittent hypoxia (IH) versus
sleep fragmentation (SF) 24 h following acquisition of the Morris
water maze in rodents, demonstrated preservation of subsequent
spatial memory following IH, but significantly worsened following
SF [68].

Older adults

Table 1.2 contains the summary findings from studies that
examined the association between OSA and cognition at a single
time point in late-life. Studies that restricted their populations to
older adults (i.e., age 60 and older) generally show weaker, if any,
links to impaired cognition [69—73]. Otherwise, most studies
where potential confounders were accounted for showed null
findings [74—78]. A seminal meta-analysis [41] of several of these
studies that examined the association between OSA and cognition
at a single time point in late-life including cognitive normal older
adults mean age of 68.5 + 3.9 y (range 55—82 y), showed a small
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Fig. 1. Study retrieval and selection for obstructive sleep apnea, cognition and Alzheimer's disease systematic review.

negative association between OSA severity and combined measures
of cognition as well as in processing speed and memory. However,
this effect appeared to be driven by publication bias, with small
case—control studies from sleep clinic populations observing the
greatest associations [41], while larger cohort studies from com-
munity samples demonstrating no effects. OSA presenting with
EDS could also drive this disparity, such that chronic or acute sleep
loss could affect cognition both transiently and chronically,
especially if the sleepiness is maintained through recurrent
sleep restriction. An interpretation by the same authors is that the
link between OSA severity and impaired cognition may be
most pronounced in those seeking specialist assessments while
absent in asymptomatic older adults or those with unrecognized
symptoms.

OSA and cognition (longitudinal studies)
Older adults

Table 1.3 contains the summary findings from three studies that
examined the association between OSA and cognition

longitudinally in late-life. In the osteoporotic fractures in men
(MrOS) study [79] a population-based prospective cohort that fol-
lowed 2636 community-dwelling cognitively normal older men
with a mean age of 76.0 + 5.3 y for approximately 3-y, there was a
modest association between nocturnal hypoxemia and subsequent
decline in a global measure of cognition. In the prognostic indicator
of cardiovascular and cerebrovascular events (PROOF) study [80], a
population-based cohort that followed 559 community-dwelling
cognitively normal older adults aged 67 at the study entry, after a
follow-up period of approximately eight years; the AHI was asso-
ciated with a slight decline in attention, which was more evident in
subjects with severe OSA. In contrast, in the atherosclerosis risk in
communities study (ARIC) study (81), which included a subset of
966 individuals who participated in the sleep heart and health
cohort with a mean age of 61 at study entry, after a follow-up
period of approximately 15 y, no evidence that OSA severity or
nocturnal hypoxemia was associated with subsequent cognitive
decline was found. The relationship between midlife OSA and later
life cognition was also null. All three cohorts had several strengths
including their large sample sizes, longitudinal study design, and
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effect). In addition, participants were starting from a very high
baseline. Therefore, the “null” effect may, in reality, be a ceiling
effect [92]. It is also important to note that much of the literature
employs a liberal definition of “high CPAP adherence”, therefore
some of the limited benefits to CPAP treatment may be due to “high
adherence” groups being too low in absolute adherence. In addi-
tion, baseline OSA severity may play a role as well, such that an
individual with severe OSA and a high adherence to CPAP treatment
may have greater benefits compared to another individual with
mild to moderate OSA and a high adherence rate.

OSA and cognition (quasi-experimental study)

A quasi-experimental study with two comparison groups
(pooled mean age of 70.1 + 7.9 y): 1) an MCI, OSA, and CPAP-
adherent group (MCI + CPAP, >4 h mean CPAP use per night for 1y,
n = 29); and 2) an MCI, OSA, CPAP-non-adherent group
(MCI —CPAP, <4 h mean CPAP use per night for 1 y, n = 25),
demonstrated significant improvements in psychomotor/cognitive
processing speed in the MCI + CPAP group vs the MCI —CPAP group
after adjustment for age, race, and marital status [94]. Moderate
improvements were also observed for memory and everyday
function at six months, and attention, daytime sleepiness, at one
year in the MCI + CPAP group [94].

Summary on OSA and cognition

In young and middle-aged adults, cross-sectional studies have
demonstrated that OSA is often associated with cognitive impair-
ment. Longitudinal studies testing whether OSA in mid-life pre-
cedes cognitive decline are rare. Intermittent hypoxia and sleep
fragmentation are the most likely cause of these cognitive and brain
structural deficits in middle-aged OSA patients, with both short and
long-term CPAP treatment improving certain cognitive domains. In
contrast, cross-sectional and longitudinal studies in older adults
show highly variable OSA-cognition associations, depending on the
study type and setting, with small sleep clinic populations (i.e.,
more symptomatic patients) driving most of the positive findings.
The characteristic lack of EDS in some older adults with OSA might
decrease the sensitivity of standard cognitive tests as well as
explain the negative findings. Other potential confounders' specific
to older adults are heterogeneity of OSA duration prior to evalua-
tion, cognitive reserve, age-associated cognitive decline, survival
bias, presence of prodromal AD, cerebrovascular disease or insulin
resistance and diabetes, among others. Lastly, it is important to note
that the majority of studies examining OSA's role on cognitive
memory have exclusively employed daytime tests, which do not
provide much opportunity for sleep-dependent processing or
consolidation to occur, in which opportunities for encoding and
recall are separated by a period of sleep with or without OSA.

OSA and MCI/AD (cross-sectional studies)

Older adults

Table 2.1 contains the summary findings from two studies that
examined the association between OSA and MCI at a single time-
point in late-life. Dlugaj et al. [95] using a community-based sam-
ple, found no association between mild cognitive impairment (MCI)
or any of its MCI sub-types and OSA-severity (the prevalence of OSA
in patients with and without MCI was 27% and 26%, respectively)
[95]. Kim et al. [96] using a clinic-based sample also found no as-
sociation between MCI and the AHI indices (although the preva-
lence of OSA in patients with and without MCI was 77% and 73% in
this case) [96]. Higher AHI however, was associated with lower

language test performance among individuals with MCI but not
among controls.

Studies examining associations between OSA and AD diagnosis
are scarce and were conducted in community samples and nursing
homes 2 to 3 decades ago. Findings are conflicting with two studies
[97,98] demonstrating a significant association between AD and
higher OSA prevalence, while three had null associations [99—101].
Nonetheless, a recent meta-analysis of these studies concluded that
the aggregate odds ratio for OSA in AD vs. healthy control was 5.05
and homogeneous [102]. In addition, higher AHI was associated
with worse cognitive and functional status, suggesting that severity
of OSA worsened in the more advanced stages of AD. Given the
cross-sectional nature of these analyses, the data cannot be inter-
preted for direction of causality or temporality. However, it does
suggest the possibility of a reverse causation between these two
disorders with higher incidence of OSA as cognitive decline pro-
gresses from MCI to AD as well as the re-emergence of associations
between OSA severity and cognitive impairment, in this case likely
related to neurodegeneration in addition to EDS and neurological
damage due to OSA.

OSA and MCI/AD (longitudinal studies)

Middle-aged to older adults

Table 2.2 contains the summary findings from studies exam-
ining the association between OSA and dementia outcomes longi-
tudinally in middle-aged to late-life. These studies tend to be more
consistent in their findings. Yaffe et al. [103] in their seminal pro-
spective study of OSA and cognition in older adult women without
dementia at baseline (overall mean age of 82.3 + 3.2 y), who were a
sub-study of the study of osteoporotic fractures (SOF) cohort and
were followed for approximately five years, found that older adult
women with OSA had an 85% higher risk of developing MCI/De-
mentia at follow-up vs. those without OSA. In another study, Yaffe
et al. [104] examined the relationship between a diagnosis of sleep
disturbance and dementia in older adult male veterans with a mean
age 67.7 + 1.1 y. Sleep disturbance was significantly associated with
higher risk of dementia and specifically, in a sub-analysis that
included OSA patients, there were significant associations with
higher risk of AD, vascular dementia and other dementias com-
bined. Lutsey et al. [105] tested the hypotheses that late-midlife
OSA and short and long sleep duration are associated with de-
mentia over 15 y of follow-up in participants from the ARIC study;
OSA and sleep duration were not associated with risk of incident
dementia, however when using adjudicated outcomes (i.e., syn-
dromic dementia and MCI as adjudicated by an expert panel), se-
vere OSA (>30 vs. <5 apnea-hypopnea events/hour) was associated
with higher risk of all-cause dementia and AD dementia, however,
associations were attenuated after controlling for cardiovascular
risk factors. Osorio et al. [106] in a retrospective study using the
Alzheimer's disease neuroimaging initiative (ADNI) data deter-
mined that OSA patients had an earlier onset age to MCI or AD, and
that CPAP use delayed the age of MCI onset. This study's main
limitation is the use of self-report for clinical diagnosis of OSA and
CPAP use. Furthermore, Chang et al. [107] in a prospective matched-
control cohort study utilizing data from Taiwan's Health Insurance
Database estimated dementia risk in OSA versus non-OSA patients
in individuals 40 y and older, followed for five years. Results from
the study showed a 70% higher risk of developing dementia among
OSA compared to non-OSA individuals. This study also demon-
strated sex-dependent, age-dependent and time-dependent asso-
ciations of OSA and dementia. OSA females relative to males, OSA
males aged 50—59 relative to females aged 50—59, and OSA females
aged >70y relative to males aged >70 y, were all at a higher risk of
developing dementia in the first 2.5 y of follow-up. Notably,
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consistent evidence show that OSA is more common in men than
women in the general population with a male-to-female ratio of
approximately 1.5:1 [9,11,108,109]. Anatomical and physiological
differences such as upper airway stability, ventilatory response to
chemical stimuli or higher abdominal or neck fat, make men more
susceptible to OSA [110—114]. The sex differences in prevalence also
remains in older adults [9,115] though the prevalence of OSA seems
to be higher in post-versus premenopausal women [116], some-
what suggesting that hormonal-related effects may be important in
OSA pathogenesis in women. In addition, studies show women
having lower AHI, more partial obstruction and shorter events,
more respiratory effort related arousal (RERA) events and upper
airway resistance syndrome (UARS), less severe OSA in non-rapid
eye movement (NREM) sleep, and a higher prevalence of rapid
eye movement (REM) related sleep apnea events compared to men
independent of age, weight and influence of medications, such as
anti-depressants [114,117—119]. With CPAP treatment, improve-
ment in apnea symptoms, neurobehavioral performance, mood
state and functional status does not vary by sex [120], though
reversion of elevated markers of systemic inflammation occurred
faster in men than women, possibly suggesting sex differences in
CPAP effects on cardiovascular risk factors [121]. However, the
clinical relevance of these results as it relates to cognitive outcomes
are still unknown. Finally, Lee et al. [122] in a study utilizing data
from the national health insurance service-health screening cohort
(NHIS-HEALS) estimated AD risk in OSA versus propensity matched
non-0SA patients, followed for 10—13 y. OSA patients showed a 58%
higher risk of developing AD compared to non-OSA individuals.

We note here that in the previous section of cross-sectional
studies, associations between OSA and cognition in later life are
highly variable and vary based on the type and setting of study.
Moreover, the risk of bias from the studies reviewed renders the
evidence inconclusive. In contrast, longitudinal studies in older
adults that examined the association between OSA and dementia
outcomes show more consistently that OSA is associated with
development of MCI or AD. However, several of these studies used
self-reports, medical records or administrative claims connoting a
clinical diagnosis of OSA, which incorporates abnormal sleep
breathing events alongside associated symptoms (e.g., EDS) that
prompted these subjects to seek a diagnosis. Thus, the link between
OSA and cognitive decline to MCI or AD in these cases might also be
driven by those seeking specialist assessments. To conclude,
although the results from the SOF cohort provide the strongest
evidence to date supporting the hypothesis that OSA precedes
dementia, the high prevalence of AD in this age group (mean age
82 at inclusion) and absence of AD biomarker assessments do not
preclude the possibility of reverse causation.

0SA and MCI/AD (RCTs)

Table 2.3 contains the summary findings from studies exam-
ining the effect of CPAP on sleep parameters and cognition in AD
patients with OSA. All five RCTs identified in this review included
older adult participants (mean age >70) and reported significant
improvements in slow wave sleep (SWS) [123], mood [124],
cognition [124,125], EDS [126], and AHI [127] in OSA patients with
AD. More specifically, in a randomized placebo-controlled trial,
Cooke et al. [123] compared the outcomes of 3-weeks of CPAP
treatment with 3-weeks placebo CPAP in patients with AD and OSA.
Results showed significant improvements in SWS after one night,
with the improved effect extending for three weeks. Chong et al.
[126] examined the effect of CPAP on EDS in mild-moderate AD/
OSA patients, finding that sleepiness was significantly reduced after
CPAP treatment. Furthermore, Ancoli-Israel et al. [125] compared
CPAP—treatment vs. placebo for three weeks in AD patients,

demonstrating significant cognitive improvements in the treat-
ment arm. Post-hoc analyses showed particular improvements in
episodic verbal learning and memory and executive functioning
(cognitive flexibility and processing speed). In addition, a double-
blind, placebo-controlled study examining the effects of donepe-
zil, a central acetylcholinesterase inhibitor, on OSA in AD patients,
found that compared to baseline and placebo, 3-months donepezil
treatment significantly improved AHI and oxygen saturation.
Furthermore, REM sleep duration was significantly higher and
Alzheimer's disease assessment scale-cognitive (ADAS-cog) scores
significantly improved [127].

Notably, there are currently no RCTs of CPAP in MCI patients
with OSA. An important limitation in these RCTs on AD patients
pertains to the power to detect meaningful changes across treat-
ment arms, with some studies being underpowered to make
definitive assumptions on the causality of the cognitive improve-
ments. Other limitations include the examination of sleep param-
eters post-hoc while the study was powered for changes in
cognition, inability to make causal inferences due to non-random
group assignment (continued use vs discontinuation of CPAP),
limited validation of sleepiness scales in older adult patients with
AD, and generalizability issues. Despite these limitations, there is
sufficient evidence to conclude that CPAP treatment may be
effective in improving cognition in OSA patients with AD and that
more better designed RCTs should follow.

Summary on OSA and MCI/AD

In young and middle-aged adults, longitudinal studies exam-
ining the association between OSA and dementia outcomes are
extremely rare for obvious reasons. Given that dementia is an
outcome related to cognitive aging, it is understandable why more
studies are conducted in the elderly than in young and middle-aged
adults. However, since AD is considered a life-course disease and
presence of preclinical AD occurs prior to the onset of symptomatic
AD, longitudinal epidemiological studies with longer follow-up
periods starting from young and middle-aged adults are needed.
Cross-sectional studies in older adults that examined the associa-
tion between OSA and MCI show null findings. In contrast, cross-
sectional studies that examined the association between OSA and
AD show an aggregate odds ratio in older adults for OSA in AD vs.
healthy controls of 5.05 (95% CI: 2.4—10.6) [102], however, reverse
causation is a possibility in these cases. Longitudinal studies in
older adults that examined the association between OSA and
cognitive decline outcomes more consistently show that OSA is
often associated with development of MCI or AD but positive
findings might be driven by OSA patients seeking treatment in a
similar way as those studies reviewed under “OSA and Cognition”.
RCTs provide an insight into the causal associations between OSA
and AD and are more compelling. All RCTs were conducted in older
adults and showed that CPAP treatment not only improved sleep
parameters (e.g., SWS, EDS) in AD patients with OSA, but it also
increased cognitive function. These findings provide evidence that
AD patients (particularly mild to moderate) with OSA may benefit
from CPAP treatment.

OSA and AD pathology/biomarkers (cross-sectional studies)

Young and middle-aged adults

Table 3.1 contains the summary findings from studies assessing
the association between OSA and specific AD neuropathology at a
single time point. We identified five such studies conducted in
middle-aged participants. For interpretation purposes, higher brain
amyloid or tau burden, higher cerebrospinal fluid (CSF) tau burden,
and lower CSF amyloid burden signify worse outcomes. Yun et al.
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[128] examined whether moderate to severe OSA increased brain
amyloid burden relative to healthy controls in 38 participants
(mean age 58.5 + 4.2 y) from the population-based Korean
genome and epidemiology study. After adjusting for potential
confounders, OSA patients had higher amyloid in the right pos-
terior cingulate gyrus and right temporal cortex, relative to con-
trols. Results from this study however, should be interpreted with
caution given the small sample size, unilaterality of findings, small
cluster size and lack of difference between groups in unadjusted
analyses. In addition, most OSA and control subjects were PiB
negative, which was expected given the age of the sample. Bu et al.
[129] examined whether hypoxia indices (AHI, oxygen desatura-
tion index, as well as mean and lowest oxyhemoglobin satura-
tions) were associated with higher serum levels of A, total tau (T-
tau) and phosphorylated tau 181 (P-tauyg1) using enzyme linked
immunosorbent assay (ELISA) in a sample of 49 OSA patients (14
patients with mild, 13 with moderate and 18 with severe) relative
to 44 simple snoring matched controls (pooled mean age of
43.5 + 9.8) from a sleep clinic. They concluded that significantly
higher levels of serum AB40, Ap42, T-tau and P-tauig; were pre-
sent in OSA patients compared to controls, suggesting a contri-
bution of intermittent hypoxia to these novel markers of AD
pathogenesis. Similarly, Motamedi et al. [130] examined whether
T-tau and other biomarkers of inflammation were related to OSA
severity. T-tau, AB40, AP42, c-reactive protein (CRP), TNF-a,
interleukin (IL)-6, and IL-10 were measured in blood and
compared between 28 participants with moderate-severe OSA, 22
subjects with mild OSA, and 24 healthy controls. The cohort
included a sample of young middle-age active duty military
personnel males (pooled mean age of 34.5 + 7.9), and total
biomarker concentrations were determined from plasma samples
using an ultra-sensitive detection method, single molecule array
(Simoa™), while CRP was assayed by ELISA. In this case, T-tau
and IL-6 concentrations were elevated in participants with
moderate-severe OSA, compared to those with mild OSA and
healthy controls. It is worth pointing out that serum/plasma Ap is
non-specific and brain-derived amyloid constitutes only a tiny
fraction of blood soluble AB and should be interpreted with
caution when using current Simoa or ELISA methods. While cur-
rent plasma/serum tau assays do not correlate significantly with
CSF T-tau or CSF P-tau, plasma tau levels may nonetheless be
useful in predicting AD risk [131]. Both AB and tau in plasma need
to be assessed in cohorts with different sociodemographic char-
acteristics, and in longitudinal studies of subjects stratified by
amyloid or tau positron emission tomography (PET) imaging, or by
CSF AP and tau profiles, as well as correlated with neuropathology
findings.

Finally, two studies by Ju et al. [132,133] (one cross-sectional
and one interventional) have demonstrated associations be-
tween OSA and AD pathology in middle-aged participants that
originated from both a community-based registry and a sleep
clinic. In the cross sectional study, Ju et al. [132] examined CSF AD
biomarkers and other neuronal derived protein in a group of 31
control (AHI<5) and 10 moderate to severe OSA patients (AHI>15)
(pooled mean age of 54 + 5.3 y). AB40 and AB42, as well as T-Tau,
P-Tauig;, neurogranin, SNAP-25, and VILIP-1 (all neuronally
derived proteins) were all lower in OSA patients. Also relevant,
there was a significant negative correlation between slow wave
activity (SWA) (as measured by delta power), CSF AB40 and AB42
(i.e., lower SWA was associated with higher CSF Ap levels) which
was not found in OSA patients. In the interventional study [133]
SWA and CSF AB were measured in participants with OSA before
and 1—4 mo after treatment with CPAP. OSA treatment increased
SWA and normalized the inverse association between SWA and
CSF AB levels.

increased amyloid burden

between OSA severity and
over 2-years

Age, sex, BMI and APOE4 Significant association

Amyloid beta levels

AHlall AHI4%

129F

68.5 (7.4)

208

Prospective

[136]
neurological and communicative disorders and stroke and the Alzheimer's disease and related disorders association; ODI: oxygen desaturation index; OSA, obstructive sleep apnea, OSAS, obstructive sleep apnea syndrome; PSQI:

Pittsburg sleep quality index; RCT: randomized clinical trial; RDI, respiratory disturbance index, Sa02, saturated arterial oxygen, SCI, subjective cognitive decline, SDB, sleep disordered breathing; SSRI, selective serotonin

reuptake inhibitor, TMT: trail making test; WAIS-R, Wechsler adult intelligence scale revised.

Sharma et al., 2018

outcomes sleep questionnaire; GDS, global dementia scale, ICD-9/10, international classification of diseases ninth/tenth edition AD criteria; IADL, instrumental activities of daily living, IQ, intelligence quotient, M, male, MCI, mild
cognitive impairment, MMSE: mini mental state examination; MRI, magnetic resonance imaging; N, number of participants; NA, not applicable; N/A, not available; NC, normal cognition, NINCDS-ADRDA, national institute of

events per hour of sleep; APOE, apolipoprotein epsilon4; BMI, body mass index, CDR, clinical dementia rating, CPAP, continuous pulmonary ambulatory pressure, CRP, c-reactive protein, CSF, cerebrospinal fluid; CVD, car-
diovascular disease, DSM-IIIR/IV-TR, diagnostic and statistical manual of mental disorders; third edition/fourth edition, text revised; EDS, Excessive daytime sleepiness; ESS, Epworth sleepiness scale; F, female, FOSQ: functional

Abbreviations: AASM: American academy of sleep medicine; Ap40/42, amyloid beta-40/42; AD, Alzheimer's disease; ADAS-cog: Alzheimer's disease assessment scale-cognitive; AHI > 15, apnea hypopnea index of 15 or more
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Older adults

In older adults, several cross-sectional studies have demon-
strated associations between OSA and AD pathology. Osorio et al.
[134] examined the association between OSA severity, cerebrospi-
nal fluid (CSF) AD biomarkers, and apolipoprotein e (APOE) alleles
in a sample of 95 cognitively normal older adults (pooled mean age
67.6 + 7.7) recruited from the community in a memory clinic
setting, demonstrating an association between OSA and CSF AD-
biomarkers. Intermittent hypoxia was associated with increases
in CSF T-Tau, P-Tau and AP42 in ApoE3+ and a trend towards
decrease AB42 levels in ApoE4+, suggesting that hypoxia may be
responsible for changes in CSF AD biomarkers but this could be
dependent to the different stages of (pre)clinical disease, genotype
and OSA severity (see also Discussion). Results from this study
should be interpreted with caution as the cohort examined con-
tains significant overlap with subjects in which we also found
negative associations between SWA and CSF AB42 (i.e., lower SWA
was associated with higher CSF AB42 levels) [135]. In addition,
differences in OSA-AD biomarker relationships by APOE alleles
were not replicated at cross-section in a follow-up study that
included the same subjects but in a larger dataset (n = 179) [136].
Liguori et al. [137] compared CSF AB42, tau proteins, and lactate
levels in OSA versus CPAP treated OSA and controls in subjective
cognitive impairment (SCI) participants admitted to a sleep clinic
(pooled mean age 67.2 + 8.1). They concluded that OSA patients had
lower CSF A2, higher lactate levels, and higher T-tau/AB42 ratio
compared to controls and CPAP treated OSA patients, with both
these groups having similar AD-biomarker levels. These findings
suggest that OSA may effect early AD biomarker changes that may
be susceptible to CPAP treatment. In a small study (n = 13) with
cognitively normal and older adult MCI patients from the com-
munity in a memory clinic setting, Spira et al. [138] showed that
greater OSA severity was associated with higher brain amyloid
burden globally and regionally in the precuneus in MCI but not in
normal older adults (n = 8), although OSA severity in the latter
group was either mild or normal (AHI4 = 7.6 + 8.2). Although the
sample size was small, this study was able to demonstrate effects
using objective measures of OSA and AD pathology, suggesting that
the sample was sufficient to demonstrate effects if one truly exis-
ted. This pattern, with observed associations between higher am-
yloid deposition measured by amyloid PET and higher AHI in a
feedforward cycle [136,138] suggests an increase in AD progression
risk by OSA, as AB accumulation and OSA severity become
increasingly abnormal. Recently, Mendes et al. [139] documented
an inverse association between self-reported OSA and brain
amyloid-PET (i.e., OSA associated with less amyloid load compared
to non-0OSA subjects) in 20 older adult individuals from a sample of
318 older adults (mean age 76.1 + 3.6 y) recruited from the com-
munity into a prospective monocentric cohort. Limitations of the
study include the small sample size, OSA by self-report, and lack of
data on OSA severity. Another study conducted in a cohort of 14
untreated cognitively normal OSA patients (pooled mean age of
65 + 9.96), concluded that OSA severity (AHI) was not associated
with AP burden measured by PiB-PET [140]. However, this study
was limited by its small sample size and lack of controls without
OSA.

OSA and AD pathology/biomarkers (longitudinal studies)

Middle-aged to older adults

Table 3.2 contains the summary findings from studies assessing
the association between OSA and AD-specific neuropathology
longitudinally. Though longitudinal studies in this area are sparse,
Lutsey et al. [141] examined whether diagnosed OSA in the middle-
aged was associated with adverse morphological brain changes

15 y later in participants from the ARIC study. After accounting for
body mass index in a series of multivariate models, OSA at mid-life
was not associated with indices/markers of brain health such as
white matter lesion and local or global brain volume loss. A third of
participants, however, did not attend follow-up neurocognitive
assessments, introducing a potential selection bias. The study had
also relatively few severe OSA patients, necessitating lumping of
moderate and severe OSA patients together, which could have
attenuated any association in severe OSA patients. CPAP use during
the follow-up period was also not accounted for.

In contrast, in a follow-up study to our previously published
analysis of OSA and AD biomarkers in community dwelling mem-
ory clinic setting, we failed to replicate our initial cross-sectional
findings but documented that OSA severity was associated with
higher amyloid burden (measured as longitudinal decreases in CSF
AP42 and increases in PiB uptake) over a 2-y follow-up [136]. We
then expanded the analysis of longitudinal examination from
purely cognitively normal older individuals to those across the
spectrum of dementia, from normal cognition, to MCI, to full AD, in
a large population from the ADNI cohort. We found associations
between self-reported clinical diagnosis of OSA with greater lon-
gitudinal increases in amyloid burden by both CSF and PET imaging
measures, and CSF concentration of both total and phosphorylated
tau over a 2.5-y period after adjusting for several pertinent co-
factors, in the normal cognition and MCI groups [142]. No signifi-
cant differences in the biomarker changes over time occurred in the
AD group [142].

Summary on OSA and AD pathology/biomarkers

In middle-aged, and older adults, cross-sectional data suggest
that there is an association between OSA and both established and
novel biomarkers of AD pathology, although the results seem more
conclusive in those studies that included clinical populations than
those that were performed in community or memory clinic set-
tings. Prospective studies examining whether OSA accelerates
amyloid deposition and affects regional brain morphological
changes that contribute to AD are sparse. The three prospective
studies we examined showed contrasting associations between
OSA and AD pathology. However, methodological issues related to
selection and information biases may have been responsible.

Discussion

Altogether, over three decades of research has investigated OSA-
cognition, OSA-MCI/AD diagnosis and OSA-AD pathology associa-
tions in the middle-aged and older adults. Studies examined in this
review were conducted between 1983 and 2019. During the first
decade, studies were fewer, of lower quality, mostly cross-sectional,
small sample-sized, clinic based and in older adults. In the second
decade, study population and setting cut across young and middle-
aged to older adults, clinic based, and community based. Sample
size were relatively larger and studies were of better quality. In the
last decade and more recently, many studies have been larger, with
samples drawn from the community. In addition, as the AD field
moves towards a biological definition, more studies are now being
conducted using neuroimaging and CSF measures of AD.

The data suggest the following: 1) in young and middle-aged
adults, OSA is often associated with cognitive impairment. In
older adults, cross-sectional and longitudinal associations between
OSA and cognition are highly variable, depending on the study type
and setting, with small sleep clinic populations (i.e., more symp-
tomatic patients) driving most of the positive findings. 2) In young
and middle-aged adults, cross-sectional and longitudinal studies
examining the association between OSA and dementia outcomes in
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late life are extremely rare. Among older adults, cross-sectional
studies have failed to demonstrate a higher prevalence of OSA
among those with MCI compared to those with normal cognition;
however, OSA is more prevalent among older individuals with AD
and/or dementia than in those with normal cognitive function. OSA
is also often associated with subsequent development of MCI or AD
in older adults, but similar to the studies on cognitive outcomes,
clinical patients who have a higher likelihood of associated
disturbed sleep or cognitive consequences of OSA might drive these
findings. 3) RCTs conducted both in the middle-aged and older
adults show that CPAP treatment not only improved sleep param-
eters (SWS, EDS) in AD patients with OSA, but it also increased
cognitive function. 4) Finally, there is a link between OSA and AD
biomarkers of neurodegeneration (e.g., AB40, AB42, Total tau and P-
tau), in the young and middle-aged using promising novel bio-
markers for AD, as well as in several studies performed in older
adults using more established AD biomarker outcomes.

A pertinent question arises from the findings: Is there a physi-
ologic explanation as to why OSA-cognitive associations are
particularly pronounced in the middle-aged and variable in older
adults? Studies suggest that the link between sleep and cognition
weakens with increasing age because the aging brain is unable to
adequately and efficiently facilitate specific sleep-supported
cognitive processes [143,144]. If this is true, then it could have
been responsible for the null or weaker results shown with
cognition where associations were identified in older adults. It also
implies that improving duration and quality of sleep in older adults
may not significantly improve cognitive dysfunction because of
diminished neural plasticity, increased neuronal loss and atrophy
[145]. These neurobiological changes seen in older adults may also
compromise memory consolidation processes, thus making elderly
controls similar to OSA cases, and attenuating any difference that
may exist when comparisons are done using standard neuropsy-
chological testing. Scullin and Bliwise in their seminal review [145]
make the case that a ‘functional weakening’ of the brain in their
support of sleep-specific cognitive processes occurs as we age; in
other words, that hippocampal-neocortical consolidation will not
occur regardless of SWS quantity and spindle density, if the hip-
pocampus, thalamus, neocortex, or hippocampal-neocortical con-
nections are greatly disrupted by the aging process. However, while
some studies in older adults show impaired sleep-dependent
memory consolidation [146,147], others have reported no evi-
dence of overnight sleep-dependent deficits [147,148], or shown
that age differences manifest in sleep-based declarative memory
but not in procedural memory consolidation [149]. It is also
possible that cognitive impairment secondary to OSA is somewhat
driven by impairment in attention and vigilance due to EDS. OSA
patients have more lapses and/or longer reaction times in tasks
requiring sustained attention, selective attention, or vigilance, and
show an increase in reaction times in conditions requiring divided
attention, when compared to healthy controls [62,64,150—153], and
this could influence other aspects of cognitive deficits attributed to
OSA [150,154,155]. In the young and middle-aged, symptomatic
OSA with EDS may drive this lapse in attention. Older OSA patients
are less likely to present with EDS [156], thus, elderly OSA patients
may be able to perform as well as healthy controls in cognitive tasks
that are generally impacted by attentional deficits. Notably, car-
diovascular effects of OSA are also more pronounced in younger and
middle-aged adults and include hypertension [12,13,84], coronary
heart disease [14—16], congestive heart failure [ 17], and stroke [18].
Cardiovascular dysfunction in OSA together with chronic inter-
mittent hypoxia, and hypercapnia, may induce axonal, glial or
white matter damage, in multiple brain regions [157—159] The ef-
fect of intermittent hypoxia in precipitating hypertension [160,161],
hypoperfusion [162,163], impaired glucose metabolism [164—166],

adverse cardiovascular and metabolic consequences [167,168], beta
amyloid deposition [169,170] and possibly tau hyper-
phosphorylation; ultimately may lead to particularly pronounced
OSA-cognitive associations (Fig. 2) that over a long period of time
progress to AD in late-life.

Another pertinent question from the findings is: What physio-
logic mechanisms underlie OSA's association with development of
MCI or AD in older adults? Disturbed sleep as seen in OSA possibly
causes changes in sleep modulated cognitive functions across the
lifespan such that there is weakening of and/or compensation at-
tempts directed at sleep-cognition links [145]. Intermittent hyp-
oxia, sleep fragmentation and intrathoracic pressure swings are the
three main processes by which OSA is thought to induce neuro-
degenerative changes (Fig. 3). Studies of cerebral ischemia suggest
that hypoxia promotes the accumulation of Ap42 [170—173], while
two mouse studies have shown that intermittent hypoxia is asso-
ciated with increased AP production [174,175]. Concerning sleep
fragmentation, actigraphy-assessed arousals and circadian rhythm
disruption have also been shown to be associated with increased
risk of MCI/dementia in older adults [176,177]. Chronic intermittent
hypoxia, hypercapnia and hypertension in OSA can induce neuronal
damage, including axons [158], white matter [157], and reduced
DTI based mean diffusivity in multiple brain regions [178]. Studies
also show grey matter loss in OSA patients compared to controls
[159,179,180]. Because of the pathophysiological effect of hypoxia
precipitating hypertension [160,161], hypoperfusion [162,163],
impaired glucose metabolism [164—166], and adverse cardiovas-
cular, and metabolic consequences [167,168]; ultimately these ef-
fects could lead to cognitive decline and progress to AD. These
findings suggest that OSA elderly patients with cardiovascular
consequences might be at higher risk of AD than those without
OSA-related vascular symptoms. In addition, inflammation
[181,182], and oxidative stress [183,184] upregulate neurocognitive
impairment in OSA and sustained OSA-cognitive dysfunction
overlay with that seen in AD-associated cognitive decline. Another
indirect plausible mechanism by which OSA increases AD risk
maybe through impairment in the CSF-ISF exchange promoted by
the glymphatic system [132]. Mechanisms that could explain OSA
inducing CSF-ISF exchange impairment include: 1) intrathoracic
pressure swings from respiratory efforts against a closed airway
that would impede the glymphatic flow of metabolites from ISF to
CSF [185—187] (although the reverse could also be true, in other
words an increase in flow secondary to the pressure increase); 2) a
reduction in the clearance of subarachnoid CSF directly into dural
lymphatic channels due to increased venous pressure that might be
elevated in OSA; and 3) cerebral edema secondary to intermittent
hypoxia. The latter mechanism has been proposed recently in a
study of 71 subjects (age: 65.3 + 5.6 y) in which severity of OSA
correlated with higher cortical thickness of the prefrontal, parietal
and posterior cingulate cortices [188], and could also explain the
brain volume reductions observed in a study following OSA treat-
ment with CPAP (i.e., pseudo-atrophy) which also suggests the
existence of brain edema in severe OSA [189]. Intriguingly, mice
exposed to intermittent hypoxia show reduced levels of AQP1 as
well as areas of extensive gliosis compatible with cytotoxic edema
[190].

Reduced SWS is another possible mechanism by which OSA
precipitates AD pathogenesis and a possible explanation for some
of the observed null findings, as matched control groups may have
age-related impairment of SWS [191]. Apneas are more commonly
observed in NREM1-2 and REM sleep and less commonly in SWS,
which has been associated with a higher respiratory arousal
threshold [192,193] as well as more stable breathing [194]. How-
ever, the temporal course of SWA has been shown to be slower in
mild OSA [195], while severe OSA patients show up to a 40%
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Fig. 2. Possible intermediate mechanisms in the relationship between OSA and Cognitive Dysfunction in the middle-aged. Chronic exposure to intermittent hypoxia, excessive
daytime sleepiness (EDS), disruption of restorative sleep from sleep fragmentation and increase in AD neuropathology may lead to increased cognitive dysfunction. EDS and
disruption of restorative sleep are more pronounced in the middle-aged relative to the elderly. Cognitive dysfunction is mainly mediated via cardiovascular and metabolic injuries.
Cardiovascular effects of OSA including hypertension, coronary heart disease, congestive heart failure and stroke can also lead to increase in AD neuropathology while metabolic
injury effects including diabetes, increased pro-inflammatory cytokines and impaired sympathetic tone from disruption of restorative sleep can further impair sleep supported

cognitive processes. OSA, obstructive sleep apnea; and AD, Alzheimer's disease.

rebound in SWS duration during OSA treatment with CPAP [196],
which suggest that changes in SWS quality may also be involved in
OSA pathology.

SWS has been suggested to promote opposite effects on AB
dynamics, after CSF AP was found to fluctuate in a diurnal pattern in
healthy adults, with lowest CSF AP levels around 10:00 h (which
correspond to approximately 04:00 h sleep time, a point roughly 2/
3 of the way through typical total sleep time), after which most
SWS has occurred and when normal sleep is mostly cycling be-
tween stages NREM1-2 and REM [191]. This CSF AP decrease was
later shown to be attenuated by prolonged wakefulness (i.e., higher
CSF AB42 levels in the sleep deprived when compared to normal
sleepers), while partial sleep deprivation with preserved SWS did
not affect Ap42 levels [191]. Further corroboration was made by
two independent observational studies [132,135]; one that showed
inverse associations between CSF AP peptides and SWA both in
middle age (53.2 + 5.7 y) [132], and another, in older adults
(66.9 + 8.3 y) [135], while a third study demonstrated increased CSF
AB40 in middle age adults (54.1 + 6.7 y) after selective SWS
disruption using auditory tones delivered via headphones [197].
Recently, we showed that spindle density during NREM 2 sleep was
negatively correlated with CSF AB42, P-tau and T-tau, with CSF T-
tau being the most significantly associated with spindle density,
after adjusting for age, sex and ApoE4. Spindle duration, count and
fast spindle density were also negatively correlated with T-tau
levels, suggesting that reduced spindles during N2 sleep may
represent an early dysfunction related to tau, possibly reflecting
axonal damage or altered neuronal tau secretion [198]. Lucey et al.

[199] also recently demonstrated that frontal NREM SWA on the
single-EEG lead Profiler was inversely associated with brain tau by
PET in predominantly cognitively normal older adults, and sug-
gesting that NREM SWA, changes may discriminate between tau
pathology and cognitive impairment at the earliest stages of
symptomatic AD. However, it is important to note that the single
EEG is limited in capacity to assess SWA topographical differences
in adults [199] and the antero-posterior shift that occurs in NREM
power during consecutive NREM sleep periods [200].

Notably, while the effects of OSA on AB have been studied in
both humans and animal models, much less is known about the
effects of OSA on tau and its hyperphosphorylation, a crucial step in
the formation of neurofibrillary tangles, a key feature of AD path-
ogenesis. Blood tau level has been investigated in OSA and is higher
(see section on ‘OSA and AD Pathology’) [129,130]. However, cur-
rent plasma/serum tau assays do not correlate significantly with
CSF T-tau or CSF P-tau and positive findings are hard to interpret.
For the first time, we demonstrated greater longitudinal increases
in CSF concentration of both total and phosphorylated tau in OSA
compared to controls [142]. Though not specifically investigating
OSA's effect, a recent study showed that the sleep—wake cycle
regulates ISF tau, and that sleep deprivation increases ISF and CSF
tau as well as tau pathology spreading [201]. The fundamental
question though for researchers in the field, is whether OSA leads to
pathophysiological processes involved in neurodegeneration
pathogenesis of which tau plays a significant role and is not
mediated by prior AP deposition. On the other hand, tau though
higher in OSA may or may not be the more informative biomarker

Downloaded for Anonymous User (n/a) at NYU LANGONE MEDICAL CENTER AND SCHOOL OF MEDICINE (AKA NEW YORK UNIVERSITY HEALTH SYSTEM) from
ClinicalKey.com by Elsevier on December 30, 2019. For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.



O.M. Bubu et al. / Sleep Medicine Reviews 50 (2020) 101250 19

OSA

{ \ '
Intermittent ’ Sleep Intrathoracic
Hypoxiar ) Fragme Pressure Swings

i ot iy e | i el i
l j 1
]m (AB and Tau) | el %
b | l

\

Cognitive Impairment/Decline

Fig. 3. Possible intermediate mechanisms in the relationship between OSA and Cognitive dysfunction in older adults. Chronic exposure to intermittent hypoxia may lead to
increased inflammation and oxidative stress, diabetes, hypertension and CVD, all potentially contributing to AD pathology development. Sleep fragmentation, both by itself and by
leading to decreased REM and SWS stages, can additionally promote AD pathogenesis. Intrathoracic pressure swings associated with OSA may disrupt CSF-ISF exchange integrity
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movement; SWS, slow wave sleep; CSF-ISF, cerebrospinal fluid-interstitial fluid; AD, Alzheimer's disease.

about the mechanisms underlying the link between OSA and
dementia.

AD-type neurodegeneration as a contributing factor to the
emergence of OSA

Little is known of how AD-type neurodegeneration may
contribute to the emergence of OSA but there is evidence that the
hippocampus might play a direct role in breathing or the response
to abnormal breathing [202]. Hippocampal structures have been
implicated in apneas, showing substantially increased activity
accompanying inspiratory onset after apnea [202,203], and func-
tional MRI studies show increased signal changes in many cortical
regions including the hippocampal formation during the Valsalva
maneuver [204]. In AD, neurofibrillary tangles (NFT), related to P-
Tau protein pathology, consistently develop first in the lower
brainstem and hippocampal formation during their earliest stages
of the disease [205] and subsequently expand to the neocortical
association areas [206,207], at which time, a diagnosis of AD is
imminent especially with the presence of AR pathology. NFTs are
closely correlated with hippocampal damage and the early symp-
toms of memory loss in AD [208]. Preexisting NFT pathology in AD
(reflected in vivo by increases in P-Tau), and/or hippocampal atro-
phy, may therefore affect breathing and increase the risk of OSA. In
addition, Alzheimer's patients have been found to have a signifi-
cantly higher proportion of NREM-related than REM-related apnea
[97].

Recommendations for critical future directions

Methodological differences existed among studies reviewed and
can be rightly viewed as a limitation in the field of OSA and AD
research. Issues related to the single assessment of OSA in longi-
tudinal studies, absent or incomplete CPAP intervention informa-
tion during follow-up, and the possibility that the etiological
timeframe relevant for the association between OSA and AD could
be outside the examined period, variability in ways in which
cognition was assessed, and issues relating to selection bias, are all
opportunities for future improvements. Many studies utilized sleep
clinic patients. It is clear that the likelihood of clinic attendance in
such participants is associated with disturbed sleep, EDS, and
possibly cognitive and cardiovascular consequences. Therefore,
when analyses are conducted on only such participants, selection
bias results are likely the outcome. In addition, not all studies
accounted for the possible role of depression and its symptoms,
which may be important mediator or confounder of the association
between disturbed sleep and cognition [209,210]. Therefore, new
research in the field should endeavor to separate causality relating
to OSA and associated symptoms including the cardiovascular
system, depression and cognition.

Despite methodological strengths such as use of PSG sleep
measures, in-vivo measures of AD pathology and certain long
follow-ups, these were not all present in all studies, therefore
limiting the strength of causal inferences that can be made.
Furthermore, future studies should examine whether these
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associations are causal, focusing on the mechanisms responsible for
the somewhat different OSA effects seen at different ages or in
different populations, including sex and race-specific OSA risk on
cognitive decline and AD.

Future RCTs need to include dose—response studies stratified
not only to the mild, moderate and severe categories of OSA, but
also to include categories addressing duration of disease, extent of
intermittent hypoxemia, fragmented sleep severity, and presence
of comorbidities such as EDS and cardiovascular symptoms. Issues
with design and sample size of double-blinded, placebo controlled
clinical trials addressing the effect of CPAP exist but need to be
improved. RCTs also need to consider the effect of EDS, which was
recently shown to be longitudinally associated with amyloid
deposition [211] and whether those randomized to “no treatment”
or “sham treatment” should be given a drug like modafinil. Lastly,
as Pan et al. [36] noted in their review, non-inferiority trials uti-
lizing sleep apnea dental devices or other non-PAP therapeutics
will also be beneficial.

Conclusion

OSA is often associated with cognitive impairment in young and
middle-aged adults. In older adults, OSA is associated with the
development of MCI or AD with clinic patients who have a higher
likelihood of associated disturbed sleep and OSA-related conse-
quences driving these findings. CPAP treatment may be effective in
improving cognition in OSA patients with AD. Recent trends
demonstrate links between OSA and AD biomarkers of neuro-
degeneration across all age groups. Intermittent hypoxia, sleep
fragmentation, reduced SWS and intrathoracic pressure swings are
possible mechanisms by which OSA induces neurodegenerative
changes. This distinct pattern observed in OSA-cognition and OSA-
AD associations in middle-aged, and older adults, provides the
foundation for envisioning better characterization of OSA especially
in late-life and the need for more sensitive/novel sleep-dependent
cognitive assessments to assess OSA-related cognitive impairment.
Future studies with improved designs addressing the longitudinal
relationship between these two entities and the possible protective
effect of CPAP treatment on AD biomarkers of neurodegeneration
are required to better intervene in this pressing public health issue.

Practice points

1. OSA is often associated with cognitive impairment in
young and middle-aged adults. In older adults, OSA is
associated with the development of MCI or AD with OSA
patients seeking treatment driving these findings.

2. There is a link between OSA and AD biomarkers of neu-
rodegeneration (e.g., AB40, AB42, total AP and P-tau 181)
in cognitively normal individuals of all age groups.

3. OSA worsens metabolic injury that is particularly
resplendent in middle-aged, and exacerbates neuronal
injury and facilitates memory and cognitive impairment,
that is particularly resplendent in older adults.

4. Intermittent hypoxia, sleep fragmentation, reduced SWS
and intrathoracic pressure swings are possible mecha-
nisms by which OSA induces neurodegenerative
changes.

5. CPAP treatment may be effective in improving cognition
in OSA patients with AD.

Research agenda

1. Future research with improved designs that address the
temporal nature of the OSA-AD relationship and whether
OSA leads to pathophysiological processes involved in
AD neurodegeneration pathogenesis are needed.

2. Issues related to the single assessment of OSA in longi-
tudinal studies, absent or incomplete CPAP intervention
information during follow-up, possibility of etiological
relevant timeframes being outside of the examined
period, variability in cognitive assessments, and possible
selection bias, are all opportunities for future
improvements.

3. Future RCTs that include categories addressing duration
of disease, intermittent hypoxemia extent, fragmented
sleep severity, and presence of comorbidities; examining
the possible protective effect of CPAP treatment on AD
biomarkers of neurodegeneration in the preclinical
stages of AD are required.

4. There is need for the development of more sensitive/
novel sleep-dependent cognitive assessments to assess
OSA-related impairment especially in older adults.
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