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Abstract

Background: The patterns of mandibular movements (MM) during sleep can be used to identify increased
respiratory effort periodic large-amplitude MM (LPM), and cortical arousals associated with “sharp” large-amplitude
MM (SPM). We hypothesized that Cheyne Stokes breathing (CSB) may be identified by periodic abnormal MM
patterns. The present study aims to evaluate prospectively the concordance between CSB detected by periodic MM
and polysomnography (PSG) as gold-standard.
The present study aims to evaluate prospectively the concordance between CSB detected by periodic MM and
polysomnography (PSG) as gold-standard.

Methods: In 573 consecutive patients attending an in-laboratory PSG for suspected sleep disordered breathing
(SDB), MM signals were acquired using magnetometry and scored manually while blinded from the PSG signal.
Data analysis aimed to verify the concordance between the CSB identified by PSG and the presence of LPM or
SPM. The data were randomly divided into training and validation sets (985 5-min segments/set) and concordance
was evaluated using 2 classification models.

Results: In PSG, 22 patients (mean age ± SD: 65.9 ± 15.0 with a sex ratio M/F of 17/5) had CSB (mean central apnea
hourly indice ± SD: 17.5 ± 6.2) from a total of 573 patients with suspected SDB. When tested on independent
subset, the classification of CSB based on LPM and SPM is highly accurate (Balanced-accuracy = 0.922, sensitivity = 0.
922, specificity = 0.921 and error-rate = 0.078). Logistic models based odds-ratios for CSB in presence of SPM or LPM
were 172.43 (95% CI: 88.23–365.04; p < 0.001) and 186.79 (95% CI: 100.48–379.93; p < 0.001), respectively.

Conclusion: CSB in patients with sleep disordered breathing could be accurately identified by a simple magnetometer
device recording mandibular movements.
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Summary at a glance
Cheyne Stokes Breathing (CSB) is a poor prognosis sleep
condition that should be screened for in patients with
heart failure or other severe neurological or kidney
diseases. A simple device that detects mandibular move-
ments can accurately identify patients with CSB.

Background
Central apnea/hypopnea assuming the pattern of Cheyne
Stokes breathing (CSB) is an independent risk condition

for mortality in patients with chronic heart failure with a
prevalence similar to obstructive sleep apnea or hypopnea
(OSA) reaching 30% [1–3]. CSB has also been described
in patients who have experienced cerebrovascular
accidents and among those with end-stage renal disease
[4]. In addition, the presence of idiopathic central ap-
neas carries an increased risk of atrial fibrillation [5].
Thus, screening and early detection of CSB could be
valuable in large populations of chronic disease at-risk
patients.
CSB is a particular form of periodic waxing and waning

respiration. The diagnosis is made in presence of periods
of central apnea or hypopnea alternating with a cres-* Correspondence: martinot.j@scarlet.be
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cendo/decrescendo pattern of ventilation. The Inter-
national Classification of Sleep Diseases diagnostic criteria
for CSB requires 10 central apneas per hour of sleep.
The cycle length (the time from one zenith in airflow
during the respiratory phase to the next zenith in airflow)
varies with the underlying disease. In systolic heart failure,
cycle lengths are longer (between 45 and 90 s), when
compared to the cycle lengths reported for other disor-
ders associated with CSB (~35 s) [6]. During the cres-
cendo/decrescendo phases, respiratory efforts are driving
changes in ventilation reflecting variations in respiratory
drive. Recurrent arousals occur usually at ventilation
peaks, promote ventilatory instability, and perpetuate
CSB breathing patterns [4, 7]. The diagnosis requires
expensive and poorly accessible type 1 or 2 polysom-
nography but could be addressed with a portable
monitoring in a high pre-test probability population
of CSB for early detection and intervention.
We have previously showed that respiratory effort are

well characterized by an increase in the amplitude of
mandibular movements (MM) > 0.3 mm during episodes
of OSA [8, 9]. In addition, we have also documented that
MM reliably identify cortical arousals ending respiratory
events and closing the mouth [10, 11]. The MM patterns
observed are 1) large-amplitude MM (MML), and 2)
“sharp” large-amplitude MM (MMS), and these two
specific and easily recognizable features readily identify
respiratory efforts and cortical arousals, respectively
[11]. Because MM are simple to acquire using magnet-
ometry, and since the quality of MM signals remains
more stable than nasal flow, throughout the night, mea-
surements of MM could be used as a single channel
monitor or screener, particularly for use in out of sleep
laboratory conditions use [11].
Based on early empirical observations of magnetom-

etry recordings during CSB events, we hypothesized that
periodic MML (LPM) and periodic MMS (SPM) would
identify classical CSB which is characterized by periods
of respiratory effort with increased ventilation alternat-
ing with periods of no (or substantially reduced) effort
during apneas (or hypopneas). We therefore evaluated
the concordance of LPM and SPM with CSB identified
during in-lab PSG.

Methods
Study design
This prospective study included all adults patients
referred to a sleep laboratory (University Hospital UCL
Namur site St Elisabeth, Belgium) over a 12-month
period for in-laboratory PSG for evaluation of suspected
sleep disordered breathing (SDB) of moderate to high
probability. The study met the standards of the Declar-
ation of Helsinki, was approved by the Medical Ethics

Committee of the Clinique et Maternité Sainte Elisabeth
Namur Belgium (approval #B166201215073), and all
participants provided written informed consent prior to
study commencement.
PSG scoring was performed by trained technicians

strictly following the American Academy of Sleep Medi-
cine (AASM) rules [6]. To maximize the visibility of re-
spiratory events of interest, the total sleep period was
divided into 3-min segments, and typical events of CSB
were identified. CSB periods consisted of at least five
breaths demonstrating waxing and waning flow ampli-
tude and separated by central apnea or hypopnea. The
duration of CSB periods was analyzed to measure the
cycle length.

Analysis of mandibular movements (MM) signals (Fig. 1)
The MM signal was acquired during the PSG. However,
scoring was performed manually by two scorers blinded
from the rest of the PSG signals. Prior to main analysis,
the inter-observer agreement was evaluated for both
SPM and LPM in 100 different samples, each one con-
tains 200 randomised observations. The result shows a
high agreement level between two scorers with Cohen’s
kappa coefficients of 0.89 ± 0.03 (min = 0.82, max = 0.95)
and 0.88 ± 0.03 (min = 0.80, max = 0.93) for SPM and
LPM, respectively. The within-observer was also eval-
uated by validating the manual classification of peri-
odic MM against Central respiratory event. Such
validation was also repeated through 100 different
samples of 200 randomised observations. The Cohen’s
Kappa coefficients were steadily above 0.81. Mean
Kappa coefficient for both scorers was 0.88 ± 0.03
(min = 0.81, max = 0.94).
Normal MM signals consist of oscillatory displace-

ments of the mandible with inspiration and expiration
with an amplitude ≤ 0.3 mm (Fig. 1). MM > 0.3 mm have
been shown to occur during increased respiratory effort
and are denominated as large MM (MML); these
displacements occur at the breathing frequency. Sharp
large-amplitude MM occur during cortical arousals,
are > 3 mm, and termed as MMS. These movements
participate to mouth closure. They are all the time well
depicted because greater than 200% with regards to the
baseline mandibular motion [12]. Arbitrarily, periodic
MM had to be present at least three times during the
3-min fragments to be considered as a period of CSB.
The periodic occurrence of MM was searched by
examining the time period between LPM and SPM as
shown in Fig. 1.

Study measurements
Routine laboratory-based PSG were recorded with B3iP®
Medatec Brussel Belgium. The parameters monitored
included EEG (Fz-A+, Cz-A+, Pz-A+), right and left
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electro-oculogram, submental EMG, tibial EMG, chest
and abdominal wall motion by respiratory inductance
plethysmography (SleepSense S.L.P.Inc, St Charles, USA),
nasal and oral flows respectively with a pressure trans-
ducer and a thermistor, and O2 saturation by digital oxim-
eter displaying pulse waveform (Nonin®, Nonin Medical,
Plymouth USA) [13].
A mid-sagittal MM magnetic sensor (Brizzy® Nomics,

Liege, Belgium) measured the distance in mm between
two parallel, coupled, resonant circuits placed on the
forehead and on the chin (Fig. 1). The transmitter gener-
ates a pulsed magnetic wave of low energy, at 10Hz. The
change in the magnetic field is inversely related to the
cube of the distance (d) between the chin and forehead
probes. The probes were connected to an electronic
module, and the distance was computed with a reso-
lution of 0.1 mm before transmission to the PSG
through a wireless connection. For each measurement,
the zero value of the mandibular displacement was
assigned to a position of completely closed mouth. The
signal was processed in such a way that, when the dis-
tance between the probes increases, it actually decreases.
Therefore, the more negative the signal, the lower the
mandibular position and the greater the mouth opening
[8]. Mandibular-movement variables are described in
Table 1, and depicted in Figs. 1, and 2.

Statistical methods
LPM and SPM (Table 1) were handled as binary factor
(present or absent) after the lifting of the blind reading
procedure.
To verify whether CSB could be correctly classified

using LPM/SPM, two classification algorithms were
used:

1) A logistic model [14] consisting of a linear regression
algorithm that predicts the probabilities of a binary
dependent variable (CSB) as a function of two

Fig. 1 Measuring the mandibular movements and definition of periodic MML and MMS. a Forehead sensor, b Chin emitter, d is a distance between
emitter and sensor, d0: offset level, Δd: variation of distance d when the mouth opens. CSB: Cheyne-Stokes breathing highlighted by a flow typical
crescendo –decrescendo pattern of at least 5 respirations; SPM: periodic sharp mandibular movements occurring on cortical arousals during the
hyperventilation phase (these are unevenly observed); LPM: periodic large mandibular movements accompanying the changes in flow during the
hyperventilation phase

Table 1 Frames of mandibular-derived variables

MM Variable Symbol Categorization

At least 5 respiratory cycles during which
MM amplitudes are ≥ 0.3 mm is termed
a period of periodic large mandibular
movements and follows the typical
crescendo-decrescendo pattern of CSB.

LPM Present or
absent

At least one sharp and large MM (amplitude >
3 mm) during the hyperventilation phase or
during a period of apnea. These are associated
with a cortical arousal.

SPM Present or
absent

Note: A SPM results in mouth closure (on cortical arousal) whether occurring
with or without a LPM. A SPM can occur during the hyperventilation phase or
during the apneic period. During the hyperventilation phase, SPM is disruptive
the breathing frequency.

Martinot et al. Respiratory Research  (2017) 18:66 Page 3 of 9



independent variables (SPM and LPM). This model
also allows the evaluation of the relationship between
the outcome and the LPM or SPM by estimating
odds-ratios (OR).

2) Classification and Regression Trees (CART), which
is a non-parametric classification method introduced
in 1984 by Breiman et al. [15]. This algorithm con-
structs a model by recursively partitioning the

source data into smaller subsets and fitting a simple
rule within each partition. As the result, the final
model can be graphically presented as a binary tree
on which the leaves represent the class of target
variable (CSB: negative or positive), two nodes repre-
sent the predictors (SPM and LPM), and several
branches represent binary conjunction rules for each
predictor.

Fig. 2 Typical MM recorded during CSB vs Obstructive events for comparing true positive SPM or LPM vs MM during obstructive events.
Examples of: a, b Central and c Obstructive respiratory events during a period of 5 sleep minutes. The arrows indicate cortical arousals. SaO2:
oxygen saturation; VTH and VAB: thoracic and abdominal inductance belts; NAF2P and NAF1: nasal pressure transducer and oronasal thermal flow
sensor; MM: mandibular movements. Cortical arousals are highlighted with an arrow. During the central event (a, b), one issue of classification is
presented, including: True Positive for LPM (a) and for SPM (b). During the obstructive event (c), the more negative the signal, the lower the
mandibular position and the greater the mouth opening until a sharp and great movement occurs closing the mouth
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The original dataset (1970 5-min segments) was
randomly divided into two equal parts: one was used for
model training (985 5-min segments) and the other for
validation (985 5-min segments). The model training in-
volved a 10 × 10 cross-validation, in which the original
training dataset is randomly partitioned into 10 equal
sized blocks. Nine blocks were used as training data
while one remaining block was retained for testing the
model. This process was repeated ten times so each of
the ten blocks would be used exactly once as for the val-
idation data. Those 100 results were averaged to obtain
the final model with the best accuracy. This final model
has been tested again over a large external validation
subset to ensure its generalized value. The performance
of models was evaluated by 10 metrics (Fig. 3).
All data analysis was conducted in R programming lan-

guage (Foundation for Statistical Computing, Vienna,
Austria) [16]. Model training and external validation were
performed using mlr package (https://cran.r-project.org/
web/packages/mlr/index.html). Following packages were
required for building the classifiers: stats (logistic model)
and rpart (CART model) [17].

Results
A group of 22 patients was identified with CSB in 573 con-
secutive recorded subjects; in this group, a total of 1,970 3-
min sleep segments were evaluated (CSB was confirmed in
1,060 fragments). Patient characteristics are summarized in

Table 2. Twelve patients had congestive heart failure (mean
left ventricular ejection fraction < 30%), five patients has
sustained a cerebrovascular accident (CVA), and in five pa-
tients, the etiology of CSB was unknown. No patient was
on opioids. Compared to the original dataset, the training
set of 985 5-min fragments had the same distribution pat-
tern of CSB, LPM and SPM.

Results obtained with the models training to classify
fragments with mandibular movements
The performance of two models used for classification
during training on 985 5-min segments is presented in

Fig. 3 Model training and testing process. (1) data splitting: the original dataset (n = 1970) were randomly divided into two equal sized subsets of
fragments (n = 985): one to be used for model training and the other for model testing. (2) the model training process implies a 10 × 10 cross-
validation and provides the best fit model. (3) Posterior predictive values of the model were estimated from cross-validation resampling process.
(4) Finally, the model was tested against external subset (n = 985). Model’s performance metrics were evaluated

Table 2 Population characteristics of 22 patients being evaluated
in the sleep laboratory for suspected sleep-disordered breathing

Median Mean ± SD 95% CI

Age (yrs) 67 65.95 ± 15.02 51.95–85.47

Height (cm) 169 169.86 ± 6.84 167.29–172.43

Weight(kg) 83 87.81 ± 13.04 73.0–112.2

BMI (kg/m2) 29.35 30.52 ± 4.91 24.78–41.22

LVEF (%)a 30 33.33 ± 9.85 28.22–38.44

TST (min) 448 441.52 ± 95.14 321.2–521.3

AHI (n/h) 57.5 52.93 ± 21.23 18.86–83.63

CAI (n/h) 19.2 17.50 ± 6.20 5.70–38.40

Arousal index (n/h) 42.3 40.67 ± 17.92 15.5–68.34

Note: aLVEF: Left ventricular ejection fraction, only measured in the group of
HF (n = 12) patients. TST: total sleep time, AHI: Apnea-Hypopnea hourly index,
CAI: central apnea hourly indice. Sex: F = 5 (22.7%), M = 17 (77.3%)
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Fig. 4. The validation of the trained classifiers is shown
in Tables 3 and 4. The classification outcome is pre-
sented as a confusion matrix (Table 3) and was identical
for both models after testing. The classification of CSB
based on LPM and SPM was accurate in 92.2%. Each
classifier provided excellent sensitivity and specificity:
92.3% and 92.1%, respectively (Table 4).

Logistic model and odds ratio for CSB-PSG
To optimally estimate the statistical power of LPM and
SPM in identification of PSG-CSB, we selected a trad-
itional logistic model (Table 5). The logistic model

Fig. 4 Performance of the two models (CART and Logistic) evaluated by cross-validation resampling. a Six metrics for evaluating the model’s
performance (Best value = 1): PPV = Positive predictive value or the probability that fragments with positive LPM or SPM truly reflect CSB.
NPV = Negative predictive value or the probability that CSB is correctly excluded once neither LPM nor SPM is identified; TPR = True positive rate,
or Sensitivity, is the percentage of correctly classified observation among positive CSB class; TNR = True Negative rate or Specificity, is the percentage
of correctly excluded CSBs; BAC = Balanced accuracy or Mean of true positive rate and true negative rate; AUC = Area under Receiver Operating Curve
(ROC) that results from computing False positive rate and True positive rate from many thresholds. b Four metrics for evaluating the classification
error (Best value =0): FNR = False negative rate, or percentage of in the negative CSB class. FPR = False positive rate, or percentage of misclassified
observations in the Positive CSB class, MMCE =mean misclassification error, defined as mean of all classifications that disagree with truth;
BER = balanced error index, defined as Mean of misclassification error rates on all individual classes

Table 3 Confusion matrix obtained during the testing
procedure

Classification by model

Real observed Positive Negative Total

Positive TP = 489 FN = 41 530

Negative FP = 36 TN = 419 455

Total 525 460 985

Note: The result was identical for both models
The Cohen’s Kappa coefficient is 0.84 (95% CI: 0.81–0.88, p < 0.001)
TP true positive, FP false positive, FN false negative, TN true negative
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showed that MML or MMS contributes independently
and significantly to the classification of CSB. The odds
ratio for CSB increases 172 folds (95% CI: 88.23–365.04)
and 186 folds (95% CI: 100.48–379.93) when SPM or
LPM are present, respectively.

Decision tree classifier (CART)
The decision tree classifier is most suitable for daily use
in clinical settings, as it provides a straightforward
decision rule and require no calculation. Based on this
classifier, presence of both LPM or SPM correctly iden-
tify CSB with an error rate of 5.9%; in contrast, absence
of both LPM or SPM excluded CSB with an error rate of
8.6% (Fig. 5).

Discussion
In the present study, scoring of the MM signals reliably
indicated the presence or absence of CSB in patients
being evaluated for suspected SDB. Our findings show
that the presence of LPM and/or SPM can accurately de-
tect CSB because the periodicity of these typical move-
ments of the mandible. In contrast, MM ruled out CSB
in absence of LPM and SPM. These findings support
conducting a prospective validity assessment studies of
MM recordings in a home-based type 4 device to detect
CSB in chronic disease at-risk populations.
Use of MM signals has emerged as sensitive and spe-

cific for identifying underlying respiratory events during
OSA [9]. Furthermore, sharp large-amplitude

movements of the mandible (MMS) detect cortical
arousals that occur after OSA events [12]. In the pres-
ence of respiratory efforts, even without pharyngeal ob-
struction, the forces produced by the displacement of
the thorax are transmitted through the mediastinum to
the upper airway. During each breath, the negative
swings of intrathoracic pressure exert caudal traction
stretching and improving upper airway patency [18]. Ac-
cordingly, similar to the MM patterns observed in OSA,
changes in mandibular position directly reflect changes
in respiratory effort during the hyperventilation phase of
CSB. During the apneic period, no MM is observed.
In the present study, classification approaches using

two binary predictors (LPM and SPM) reliably detected
a single binary response variable (presence of CSB de-
tected by PSG). Although different statistical methods
may differ in their algorithms, their level of complexity
and their overall performance, decision rules in classify-
ing and analyzing the relationship between the binary
predictors (LPM, SPM) and the predicted in-laboratory
PSG CSB were clearly apparent and involved interpret-
able models (a traditional logistic model and a decision
tree (CART model). Compared to a traditional logistic
model and odds-ratio, the CART algorithm has more
advantages as the decision tree can be visualized and
easily interpreted by straightforward prediction rules,
and accordingly is simple and robust for clinical decision
making [17]. As the validation results were identical for
both logistic and CART models, any of them could be
used to predict the probability of CSB using MM signals.
Notwithstanding the unique predictability of CSB from

MM recordings, we should mention some potential limi-
tations of MM signals. MM signals may fade or become
less easily detectable in presence of the muscle atonia
during REM sleep. However, CSB is more common
during NREM sleep and usually abolished during REM
sleep [19, 20].
MM signal artefacts from magnetic interferences have

only been observed in CT scan rooms or in presence of
metal parts placed very close to the probes, or moving
in the space around or between the probes. Steady state
magnetic signals are filtered out [21].
Some drugs such as sedatives could increase the

threshold for arousals and accordingly reduce the fre-
quency of arousal events, and therefore of SPM, affect-
ing the ability of the signal to detect CSB [22]. This risk
is limited in a model where two independent variables
(LPM and/or SPM) are employed. Others movements of
the mandible (due to bruxism, chewing or swallowing)
have been described during sleep but the latter are void
of the typical CSB periodicity. They are not driven at the
breathing frequency [19]. The false negative and positive
rates could have been affected by scoring error and the
simplicity of the classification rule (exclusive use of

Table 4 Performance of the two models, evaluated on an
external dataset

Metrics Scale
(Worst-Best)

Logistic
model

Decision
tree model

ROC-AUC 0.5–1 0.93 0.92

Balanced Accuracy 0–1 0.92 0.92

True positive rate (Sensitivity) 0–1 0.92 0.92

True negative rate (Specificity) 0–1 0.92 0.92

Positive predictive value 0–1 0.93 0.93

Negative predictive value 0–1 0.91 0.91

False negative rate 1-0 0.08 0.08

False positive rate 1-0 0.08 0.08

Balance error 1-0 0.08 0.08

Mean misclassification error index 1-0 0.08 0.08

Table 5 Simple logistic model

Simple logistic Coefficient (97.5% CI) Odds-ratio (97.5% CI) p-value

Intercept −2.54 (−2.91– − 2.21) 0.08 (0.05–0.11) <0.00001

LPM (+) 5.23 (4.61–5.94) 186.79 (100.48–379.93) < 0.00001

SPM (+) 5.15 (4.48–5.90) 172.43 (88.23–365.04) < 0.00001

AIC (Akaike Information Criterion) = 426.16
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binary predictor). However, the study is strengthened by
the blinded scoring approach, the large sample size used
with random assignments into a training and validation
sets, a large and comprehensive range of classifiers with
potential machine solutions, a repeated K-fold cross val-
idation on random data subsets, and an independent
and random model of validation. Based on the present
findings, we posit that the models developed herein
could contribute the development of an algorithm to
evaluate CSB diagnosis based on MM manual analysis,
particularly considering that the CART model classifica-
tion tree is appropriate for human decision making [23].
Of note, even more complex algorithms may have
potential applications when used in the development of
automated interpretation software.

Conclusion
Isolated analysis of mandibular movements enables
accurate identification of CSB in patients during in lab
PSG. MM may be a useful simple tool for screening and
home monitoring of patients at risk for CSB.
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