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ABSTRACT

Background and objective: Mandibular movements
(MMs) and position during sleep reflect respiratory
efforts related to increases in upper airway resistance
and micro-arousals. The study objective was to assess
whether MM identifies sleep-disordered breathing
(SDB) in patients with moderate to high pre-test
probability.
Methods: This was a prospective study of 87 consecutive
patients referred for an in-laboratory sleep test.
Magnetometer-derived MM signals were incorporated
into standard polysomnography (PSG). Respiratory
events detected with MM analysis were compared with
PSG for respiratory disturbance index (RDI) with a
blinded scoring. All records were scored manually
according to American Academy of Sleep Medicine
rules. Primary outcome was to rule-in obstructive sleep
apnoea syndrome (OSAS) defined as RDI cut-off value
≥5 or 15/h total sleep time (TST).
Results: High concordance emerged between MM and
PSG-derived RDI with high temporal coincidence
between events (R2 = 0.906; P < 0.001). The mean
diagnostic accuracy of MM for OSAS using RDI MM
cut-off values of 5.9 and 13.5 was 0.935 (0.86–0.97) and
0.913 (0.84–0.95), with a mean positive likelihood ratio
(LLR+) of 3.73 (2.7–20.4) and 8.46 (2.3–31.5), respec-
tively. Receiver operating characteristic (ROC) curves
at PSG cut-off values of 5 and 15/h TST had areas
under the curve (AUC) of 0.96 (95% CI: 0.89–0.99) and
0.97 (95% CI: 0.91–0.99) (P < 0.001), respectively. MM
analysis accurately identified SDB at different levels of
severity.
Conclusion: RDI assessed by MM is highly concordant
with PSG, suggesting a role of ambulatory MM record-
ings to screen for SDB in patients with moderate to high
pre-test probability.
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INTRODUCTION

Laboratory-based polysomnography (PSG) is the gold
standard for diagnosing obstructive sleep apnoea
(OSA) syndrome (OSAS). However, this method is
expensive, time-consuming and cannot keep pace with
demand.1 In-laboratory testing is also inconvenient for
patients, and does not assess their normal sleeping
environment.
There are several unstandardized type 4 diagnostic

devices consisting of one or two recording channels
comprising oximetry, but their utility for diagnosing
OSAS in different populations has yielded mixed
results.2 Indeed, nocturnal oximetry as a stand-alone
signal is not currently recommended because the
obstructive nature of identified events cannot be
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SUMMARY AT A GLANCE

The study aims to score blindly the mandibular
movements (MMs) compared with the respiratory
disordered events during an in-laboratory polysom-
nography in patients with obstructive sleep apnoea.
High agreement was found between both scorings.
A simple recording of the MMs could be explored
for home diagnosis of sleep-disordered breathing.
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documented and not all events cause oxygen desatura-
tion.3 Recently, the use of a single-channel recording of
nasal flow was proposed as a first-line diagnostic for
OSAS, despite the fact that not all recordings were
interpretable.4 Furthermore, nasal pressure measure-
ments do not detect oral airflow, leading to overscoring
of apnoeic events.5 Finally, none of the type 4 devices
accurately record sleep time, instead relying on total
recording time. Consequently, these devices routinely
over or underestimate the respiratory disturbance
index (RDI, hourly rate of respiratory disturbances)
compared with PSG, impacting therapeutic decisions.6

Recordings of mandibular position with a high-
resolution magnetometer can accurately identify corti-
cal arousals, respiratory effort (RE) and RE-related
arousals (RERAs).7,8 Additionally, analysis of mandibu-
lar movements (MMs) accurately estimates sleep
duration and detects mouth opening as a surrogate for
oral breathing.9 Importantly, MMs are not influenced
by head position, and thus the signal is reliably and
consistently detected throughout sleep.10

We hypothesized that MM analysis would compare
favourably to PSG. We therefore compared MM record-
ings to standardized in-laboratory PSG for the diagno-
sis of OSAS (ICSD-3, International Classification of
Sleep Disorders, Third Edition) and assessed if MM
analysis was able to determinate the severity of the dis-
ease based on apnoea/hypopnoea index (AHI, hourly
rate of apnoea and hypopnoea) classification.

METHODS

Study design
This was a prospective study of consenting adult
patients scheduled for a single overnight in-laboratory
PSG. The patients eligible to participate were consecu-
tive subjects, 18 years and older with symptoms sug-
gestive of sleep-disordered breathing (SDB) undergoing
a single PSG. The study was approved by the ‘Comité
d’Ethique Hospitalo-Facultaire-Universitaire de Liège’
(IRB-00004890-N�B707201523388) and all participants
provided informed consent.

Sample size calculation
At least 90 subjects were deemed necessary to obtain a
significant value of 0.9 for both intraclass correlation
coefficients (2.1) and area under the curve (AUC) of
MM-RDI against the null-hypothesis, at α = 0.05 and
power = 0.8. After adjusting for a dropout rate of 10%,
with a negative/positive ratio of 0.1, a total sample size
of 100 subjects was planned for recruitment. To obtain
a large enough number of true negatives (as some type
4 diagnostic devices have been reported to perform less
in patients with mild or no SDB), 13 volunteers who
had no specific sleep complaints were recruited by
word of mouth.11

Study evaluations and measurements
Demographic characteristics, medical history, physical
examination and a standardized survey of seven symp-
toms reported in ICSD-3 as being related to SDB using

a Likert-scale with four frequency levels (0: never, 1:
sometimes, 2: frequently and 3: every night) were
obtained. The seven symptoms included nocturnal
gasping and/or choking, witnessed apnoeas, morning
headaches, non-refreshing sleep, daytime sleepiness,
nocturia and reported habitual snoring. In addition,
the Epworth excessive daytime sleepiness question-
naire scale (Epworth Sleepiness Scale, ESS) was
administered.12

Routine laboratory-based PSG was recorded with a
SomnoscreenPlus (Somnomedics, Randersacken, Ger-
many). For further details, see Appendix S1
(Supplementary Information)
A mid-sagittal MM magnetic sensor (Brizzy, Nomics,

Liege, Belgium) measured the distance in mm between
two parallel, coupled, resonant circuits placed on the
forehead and on the chin (Fig. 1). The transmitter gen-
erates a pulsed magnetic wave of low energy at 10 Hz.
The change in the magnetic field is inversely related to
the cube of the distance (d) between the chin and fore-
head probes. The probes were connected to an elec-
tronic module, and the distance was computed with a
resolution of 0.1 mm before transmission to the PSG
through a wired connection. The more negative the sig-
nal, the lower the mandibular position and the greater
the mouth opening. Mandibular-derived variables are
described in the Abbreviation list, and depicted in
Figures 1 and S1 (Supplementary Information).

Scoring and quality control
Individual recordings were judged acceptable if >4 h
duration, with flow, O2 saturation and artefact-free MM
data present for >90% of sleep time. Scoring for MM
was performed by two blinded independent readers
who had been trained to read MM tracings, while a dif-
ferent experienced reader analysed the standard PSG,
after de-identification of records. The accuracy of MM
scoring of each of the two MM readers was audited by
a sleep specialist on a random sample of 15 records.
American Academy of Sleep Medicine (AASM) rules
were used to score all respiratory events and to calcu-
late AHI and RDI (RDI = AHI + RERA index) as recom-
mended by the ICSD-3 for OSAS diagnosis.13,14

Statistical analysis
Data were analysed using SAS 9.2 (SAS Institute Inc.,
Cary, NC, USA). The analysis focused on two main
issues, which are described below.

Agreement and relationship between MM

and PSG scorings
• Stepwise linear regression analysis was performed to

evaluate the relationship between MM-RDI and
PSG-RDI.

• The agreement between PSG-RDI and MM-RDI was
evaluated using Bland–Altman plot15 (based on abso-
lute scoring) and Cohen’s linear weighted kappa
coefficient16 (based upon the classification of patients
into four severity groups).

• Inter-observer agreement for scoring MM and PSG
was evaluated for all studies by intra-class
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correlation coefficient17 using two-way random
model for single measure (ICC 2.1).

• Temporal coincidence between MM and PSG events
was determined as follows: (i) the end of the PSG
event was marked on the time line and (ii) a concur-
rent MM event was defined as that occurring within
15 s around the marked event. The results were
described as positive when co-occurring, or negative
when not. The sensitivity and the specificity of the
coincidence (Co.Sen and Co.Spe, respectively) were
determined and analysed as a function of the PSG
AHI, with and without adjustment for total sleep
time (TST).

Performance of MM scoring against the gold

standard
The performance of MM-RDI for detecting OSAS
patients based on two PSG-RDI thresholds was evalu-
ated by receiver operating characteristic (ROC) curve
analysis.18 The outcome variable related to the diagnos-
tic of the disease was based on a sensitivity/specificity
analysis of MM device with the two different polysom-
nographic pre-specified cut-off values of RDI recom-
mended in ICSD-3 (PSG-RDI ≥ 5 and ≥15/h TST).
OSAS severity was evaluated from AHI, with <5, 5–15,
15–30 and >30/h TST representing the four severity
categories. The post-test probability for each cut-off
point was calculated as previously reported by Collop
et al.19

Descriptive data are presented as mean � SD and
95% CI. Statistical significance was defined at the 5%
level.

RESULTS

Characteristics of study population
A total of 100 patients were enrolled over a period of
3 weeks. The performance of the integrated MM and
PSG was acceptable with a failure rate <10% in keeping
with the recommendations of Collop et al.19 for an
unattended PSG. Specifically, eight recordings were
technically unacceptable, in four subjects due to failure
to capture the MM signal into the PSG, three subjects
due to poor oximetry recording and in one subject due
to the loss of belts signal.
The final dataset included 79 patients with suspected

OSAS and 13 healthy subjects. The characteristics of
the participants are presented in Tables 1 and S1
(Supplementary Information). Patients were predomi-
nantly males, aged 18–80 years. The majority were
either overweight or obese. Enrolled patients repre-
sented a typical referral population in which the pre-
test probability (after bootstrapping) was 81.5% (95%
CI: 73.9–88.0%) for an AHI > 5/h TST and 46.7% (95%
CI: 38.0–55.4%) for an AHI > 15/h TST. The distribution
of the clinical scores (0–3) among 79 OSAS suspected
patients is presented for each of the seven symptoms
in Figure S2 (Supplementary Information).

Figure 1 Classification of mandibular movements (MMs). Large MM (MML): periods of ≥10 s during which MM amplitudes were

≥0.3 mm from peak to peak were reported as MML. Sudden MM (MMS): a single sudden very MML (amplitude > 1 mm) during a

respiratory cycle with a change in motion slope, disrupting the previous breathing frequency and the envelope around the previous

peak to peak mandibular displacement. Note: MMS is closing the mouth accompanied or not with an MML and/or MMO to calculate

MM-RDI (respiratory disturbance index). Mouth opening MM (MMO): periods of mouth opening > 0.3 mm with a duration of at least

two respiratory cycles or at least 10 s, in the presence or absence of MML or MMS. 1, Forehead sensor; 2, chin sensor; 3, signal

processing unit.
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Agreement and relationship between MM

and PSG

RDI and TST differences between MM

and PSG
Scoring for MM showed a strong agreement between
the two readers: ICC (2.1) = 0.967 (95% CI: 0.901–0.992;
P < 0.001). The differences in RDI and the TST between
both scoring methods, PSG and MM, are presented in
Tables S1, S2 and S8 (Supplementary Information).

Agreement between the two scoring methods
The MM-RDI underestimated PSG-RDI by a mean of
2.88 events and such underestimate remained constant
across all ranges of PSG-RDI (Fig. 2). MM-RDI agreed
also with PSG-AHI and hourly rate of >3% oxygen
desaturation (ODI). The linear kappa coefficient was
good to very good (Table 3). Both AHI and RERA con-
tributed significantly to MM-RDI variance (Table S3,
Supplementary Information). Moreover, the adjusted
MM-RDI for the mean difference between MM-RDI

and PSG-RDI significantly differed by the severity of
OSA patients.

Linear relationship between MM and PSG

scorings for RDI
In the pooled sample of patients and controls (n = 92),
MM-RDI highly significantly correlated with PSG-RDI
(Fig. S3, Supplementary Information) with a coefficient
of 1.005 (95% CI: 0.96–1.05; P = 0.001) and a small
residual error (0.026). A simple linear model: PSG-
RDI = 2.743 + 1.005 × MM-RDI allowed accurate pre-
diction of up to 90.6% of the PSG-RDI variance (Fisher
test: P < 0.001). Detailed information about the model
is presented in Table S4 and Figure S4 (Supplementary
Information). The relationship between MM-RDI and
PSG-RDI scores (n/h) was significantly influenced by
OSAS severity based on AHI criteria (P < 0.001), that is
being stronger in more severe OSAS patients (see
Table S5, Supplementary Information). MM-RDI was
significantly correlated with the hourly rate of cortical

Table 1 Characteristics of the study population

Patients (n = 79) Healthy controls (n = 13)

Characteristics Mean � SD 95% CI Mean � SD 95% CI

Age (years) 48.8 � 14.6 45.5–51.7 27.4 � 12.3 21.9–33.9

Weight (kg) 95.1 � 25.8 89.8–100.9 57.5 � 7.2 54.2–61.2

Height (cm) 172.6 � 10.2 170.4–175.0 168.6 � 6.9 165.5–171.9

BMI (kg/m2) 31.8 � 7.7 30.2–33.4 20.2 � 2.1 19.0–21.6

ESS score 10.0 � 5.9 8.6–11.2 4.7 � 3.4 3.2–6.4

PSG-TST (min) 429.2 � 9.9 408.9–449.1 363.3 � 88.2 317.2–403.9

PSG-AHI (n/h)† 27.1 � 27.2 21.2–33.2 3.9 � 3.0 2.5–5.6

PSG-RERA (n/h) 8.4 � 6.5 6.9–10.0 3.1 � 2.7 1.7–4.7

PSG-RDI (n/h)‡ 35.5 � 24.4 30.4–40.7 7.0 � 4.1 5.0–9.5

ODI (n/h)§ 21.8 � 2.5 16.5–26.9 1.9 � 1.6 1.2–2.7

†Number per hour of apnoea and hypopnoea events.
‡Number per hour of respiratory disturbance events.
§Number per hour of 3% oxygen desaturation events.

AHI, apnoea/hypopnoea index; CI, confidence interval; ESS, Epworth Sleepiness Scale; PSG, polysomnography; RDI, respiratory

disturbance index; RERA, respiratory effort-related arousal; SD, standard deviation; TST, total sleep time.

Table 2 Receiver operator characteristics of MM-RDI for detecting PSG-RDI at the diagnostic levels reported in ICSD-3

For detecting PSG-RDI ≥ 5 For detecting PSG-RDI ≥ 15 For detecting PSG-RDI ≥ 30

Best cut-off point† >5.9 >13.5 >32.5

AUC 0.96 (0.89–0.99) 0.97 (0.91–0.99) 0.91 (0.84–0.96)

Youden’s J index‡ 0.93 (0.83–0.96) 0.92 (0.83–0.97) 0.71 (0.50–0.80)

Sensitivity 93.2 (86.77–97.04) 89.0 (79.83–94.31) 74.29 (57.67–85.92)

Specificity 100.0 (51.01–100.0) 100.0 (83.18–100.0) 96.49 (87.23–99.65)

False positive rate (%) 6.82 (3.16–14.09) 9.59 (4.72–18.49) 25.71 (14.16–42.07)

False negative rate (%) 0.0 (0.0–48.99) 0.0 (0.0–16.82) 3.51 (0.97–11.92)

LLR+ 3.73 (2.7–20.4) 8.46 (2.3–31.5) 21.17 (5.35–83.76)

LLR− 0.07 (0.03–0.15) 0.11 (0.06–0.21) 0.27 (0.15–0.47)

Accuracy 0.93 (0.86–0.97) 0.91 (0.84–0.95) 0.88 (0.80–0.93)

†Best cut-off point was determined using Youden’s J index. The 95% CIs were determined by bootstrapping.
‡Youden’s J index = sensitivity + specificity − 1.

AUC, area under the curve; CI, confidence interval; ICSD-3, International Classification of Sleep Disorders, Third Edition; LLR+, posi-

tive likelihood ratio; LLR−, negative LLR; MM, mandibular movement; PSG, polysomnography; RDI, respiratory disturbance index.
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arousals from PSG (Pearson’s r = 0.741; 95% CI:
0.536–0.873; P < 0.001).

Temporal coincidence
Mean Co.Sen and Co.Spe were 0.83 (95% CI: 0.79–0.87)
and 0.74 (95% CI: 0.70–0.78), respectively. Co.Sen was
similar across the patients of different severities while
Co.Spe was proportional to the severity of OSAS (see
Tables S6, S7, Supplementary Information).

Diagnostic performance of MM-RDI against

the PSG-based criteria
ROC curve analyses were performed to evaluate the
ability of MM-RDI to detect PSG-defined OSAS at three
pre-specified selected cut-off points (Fig. 3). The char-
acteristics as well as the best cut-off point of these
three classifications are given in Table 2. The post-test

probabilities for a positive diagnosis with PSG-RDI ≥ 5/
h TST at a cut-off value of MM-RDI = 5.9 and ≥15/h
TST at a cut-off value of MM-RDI = 13.5 were 94.2%
(95% CI: 92.2–98.9%) and 88.1% (95% CI: 66.8–96.5%),
respectively.

DISCUSSION

We compared MM analysis with the findings of an in-
laboratory unattended conventional PSG for assess-
ment of OSAS in a mid-to-high pre-test probability
cohort. The PSG-derived RDI and the MM-RDI were
highly correlated in a population spanning a large
spectrum of OSAS severity and normal individuals
(adjusted R2 = 0.906). Furthermore, MM recordings

Figure 2 Bland–Altman plot displaying

the concordance between MM-RDI

(mandibular movement-respiratory

disturbance index) and polysomnography

(PSG)-RDI. Bland–Altman plot in which the

difference between MM-RDI and PSG-RDI

(y-coordinate) is plotted against the PSG-RDI

(reference method, x-coordinate). The mean

of difference (MM-RDI − PSG-RDI = −2.9) is

presented as a continuous horizontal line.

Two additional horizontal lines are plotted

above and below this line at a distance of

1.96 × standard deviation (SD) of the

differences and represent the upper and

lower limits of agreement (with their SD in

dotted lines) at +10.5 and −15.0, respectively.

The shaded columns correspond to the

critical intervals of mild obstructive sleep

apnoea (OSA) (PSG-RDI from 5 to 15) and

moderateOSA (PSG-RDI from15 to 30).

Table 3 Agreement between MM and PSG by Cohen’s

kappa coefficient

Linear weighted

kappa coefficient 95% CI

P-

value

MM-RDI vs

PSG-RDI†
0.679 0.573 0.784 <0.001

MM-RDI vs

PSG-AHI

0.520 0.418 0.622 <0.001

MM-RDI

vs ODI

0.389 0.295 0.452 0.014

ODI vs

PSG-RDI

0.324 0.228 0.420 0.012

The estimated value and 95% CI of the kappa coefficient for

classifying the severity of the OSAS patients by three RDI

thresholds (5, 15 and 30 events/h).
†PSG-RDI and MM-RDI mean respiratory disturbances hourly

index, measured by polysomnography and by MM record,

respectively.

AHI, apnoea/hypopnoea index; CI, confidence interval; MM,

mandibular movement; ODI, hourly rate of >3% oxygen desatu-

ration; OSAS, obstructive sleep apnoea syndrome; PSG, poly-

somnography; RDI, respiratory disturbance index.

Figure 3 Receiver operating characteristic (ROC) curve

analysis. Three ROC curves show the ability of MM-RDI

(mandibular movement-respiratory disturbance index) to detect

polysomnography (PSG)-defined obstructive sleep apnoea

syndrome (OSAS) at three cut-off points: PSG-RDI ≥ 5 (grey),

PSG-RDI ≥ 15 (black) and PSG-RDI ≥ 30 (dashed). Their area

under the curve (AUC) of ROC values were 0.957, 0.976 and

0.914, respectively.
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accurately diagnosed OSAS with an RDI ≥ 5/h TST in
the presence of suggestive symptoms, or an RDI ≥ 15/h
TST with or without symptoms, independent of the
presence of co-morbidities (ICSD-3).
At the cut-off value of ≥15/h TST, the accuracy of

type 4 devices has been reported as low.4,20–28 In con-
trast, here, for PSG-RDI of ≥5 and ≥15/h TST, the
mean positive likelihood ratios (LLRs+) were 3.73 and
8.46, and the post-test probabilities of obtaining a
true positive diagnosis were 94.2% and 88.1%, respec-
tively. Our results are aligned with the recommenda-
tions of Collop et al. regarding the mandatory
performance characteristics of portable devices for
assessing potential OSA patients in out-of-centre
settings.29 The coincidence analysis provided an
event-by-event unique overview of the mandibular
behaviour in relationship with the traditional variables
recorded during PSG.
Bland–Altman analysis between MM-RDI and PSG-

RDI showed an acceptable mean (range) difference of
−2.9 (+10.5 to −16.3), and the level of agreement meas-
ured with Cohen’s kappa coefficient was good to very
good, and remarkably better than the agreement levels
shown in other studies exploring single-channel
devices.19,27,29 The agreement between MM-RDI and
PSG-AHI was observed but to a lesser degree than
with PSG-RDI. This is due to the contributions of
RERAs to determine MM-RDI as shown in Table S3
(Supplementary Information). Furthermore, the level of
agreement was high regardless of severity of the dis-
ease, even when considering RDI instead of AHI
(detection of RERAs is optional in the AASM scoring
rules), an approach that could have amplified the dif-
ferences between the two methods.
MM recordings detected SDB with high sensitivity

in all spectrums of event severity (i.e. apnoeas, hypop-
noeas or RERAs) with a low false negative rate. To
increase the number of subjects in the low RDI range,
in which single-channel approaches might perform
poorly, we added 13 young healthy individuals with-
out sleep complaints. This facilitated a better estimate
of the specificity when considering the performance of
MM and an RDI cut-off value of >5/h TST. The popu-
lation explored in our centre also included subjects
without a high pre-test probability of OSAS, thus
encompassing the entire spectrum of the clinical
OSAS presentations commonly seen in clinical prac-
tice. This prevented overestimation of true positives
for MM analysis in the context of a high pre-test prob-
ability for OSAS, making our analyses more relevant to
clinical practice, where all disease severities occur.
This is clinically relevant as specific screening strate-
gies are desirable in asymptomatic cardiovascular and
metabolic populations. Thus, the significance of the
relationship between MM-RDI and PSG-RDI improved
with OSA severity, while the risk of underestimation of
RDI by MM was minimal even at low level of OSAS
severity.
The high agreement encountered herein confirms

that MM recording performs extremely well across all
OSAS severities, with only four outliers being identified
in the PSG-RDI range of 15–30/h TST. In these cases,
MM-RDI overestimated RDI compared with PSG-RDI.
This contrasts to other type 4 portable devices which

underestimate RDI.28,30 This overestimation may be
due to increased sensitivity of MM to detect REs, or the
recording of events during wakefulness, with MM
recordings failing to identify such wakefulness periods.
However, both the present study and a previous one10

indicate that MM analysis provides reliable estimates of
TST (which is used in this study to compute MM-RDI,
Tables S3, S4 (Supplementary Information)). The relia-
bility of TST provided by MM analysis did contribute to
the performance of MM-RDI.
Recording of nasal pressure (nasal cannula con-

nected to a pressure transducer) alone or in combina-
tion with oximetry using a portable device has been
documented to confidently rule in OSAS in a high pre-
test sleep clinic population, and is sensitive to even
subtle changes in airflow.4 The inspiratory portion of
the nasal pressure waveform can display flattening, a
surrogate of airflow limitation when using appropriate
filter settings.31–33 Nevertheless, nasal flow remains an
unstable signal that is susceptible to confounding fac-
tors such as nasal congestion, unstable positioning of
the nasal cannula and diminution of the signal due to
mouth breathing, while in contrast MM analysis detects
mouth opening and is insensitive to the other confoun-
ders.34 Compared with a nasal pressure-based type
4 device, superior diagnostic performance was
observed with MM because hypopnoeas, RERAs and
cortical arousals are reliably identified, in marked con-
trast with other portable devices.10

Common pitfalls related to portable devices type
3 and type 4 when compared with type 1 or type
2 for estimating RDI have been controlled for in this
study, as there were no effects of different study nights
(night to night variability) and the environment was
standardized.
Our study was one of the first assessing event-by-

event temporal coincidences and not only comparing
RDI between two methods. We should emphasize that
the temporal coincidence between PSG and MM respi-
ratory events was high. In terms of sensitivity, the
coincidence was unchanged across levels of severities
supporting the use of MM in ambulatory device for
diagnosing SDB.
The limitations of the study are the following: The

respiratory events identified by MM analysis alone can-
not differentiate between apnoea, hypopnoea or RERAs
as the flow is not measured. However, MM is a reliable
indicator for respiratory events and can differentiate
readily between obstructive or central respiratory
events.9

The high level of in-laboratory agreement between
MM-RDI and PSG-RDI will need to be confirmed with
a home-based study. On the other hand, video surveil-
lance during PSG could inform about sleep MM.
The accuracy to rule in OSA has to be measured in a

group of patients with low (<0.5) pre-test probability to
ascertain whether the LLR for a positive test provides a
post-test probability of at least 0.95 for a true positive
diagnosis. Our study did not address the question of
ruling out OSAS. However, the false negative rate was
low, thereby contrasting with other unattended porta-
ble studies, such that the risk of wrongly categorizing
mild subjects below the diagnostic threshold for OSAS
remains very low.27
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In summary, MM emerges as a useful tool in the
diagnosis of OSAS. MM recordings during one night
estimate a similar RDI compared with traditional PSG
in a group of symptomatic patients of all ages with or
without co-morbidities. Moreover, the risk of misiden-
tifying mild OSAS subjects as being normal remains
very low. Thus, a type 4 device based on MM analysis
could offer a reliable and valid alternative to the con-
ventional in-laboratory recording when its use is
aimed at a clearly defined and carefully selected
population.
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