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KEY POINTS

� Obstructive sleep apnea is associated with impairment of multiple aspects of cognition, including
attention, delayed visual and verbal memory, visuospatial skills, and some aspects of executive
function.

� The mechanism of this impairment includes neuro-inflammation, oxidative stress, and sympathetic
overactivity.

� Treatment with continuous positive air pressure (CPAP) is shown to improve executive function and
verbal memory at 2 to 3 months.

� CPAP use of at least 6 hours per night may lead to further improvements in neurocognitive function.
INTRODUCTION

Obstructive sleep apnea (OSA) is a relatively com-
mon breathing disorder known to increase in prev-
alence with obesity and age.1,2 The repetitive
interruptions in breathing typically cause frag-
mented, poor quality sleep as well as oxygen
desaturations. Other sleep disorders, including
insomnia, restless legs syndrome, and parasom-
nias, such as sleepwalking, can be exacerbated
by sleep-disordered breathing. OSA has been
associated with excessive daytime sleepiness,3

hypertension,4 cardiovascular disease,5 stroke,6

depression,7 impaired glucose tolerance,8 endo-
crine dysfunction,9 and increased risk of motor
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vehicle accidents (MVAs).10 Hospitalization days
and medical costs are increased per annum for
persons with OSA.11 In addition, multiple aspects
of cognition can be affected; this is not only due
to the sleepiness that often accompanies OSA
but also because of direct pathologic effects on
the brain. Although continuous positive air pres-
sure (CPAP) has been shown to improve many of
the conditions mentioned, opinions vary regarding
improvement of neurocognitive impairments with
CPAP. In this article, literature from the last 5 years
on the neurocognitive impact of OSA, proposed
mechanisms of these sequelae, and effect of
CPAP, are reviewed.
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OBSTRUCTIVE SLEEP APNEA EFFECTS ON
ATTENTION AND VIGILANCE

Attention is the ability to maintain focus on certain
sensory stimuli while de-emphasizing other stim-
uli. Vigilance is the ability to sustain focus over
an extended period of time. These neurocognitive
domains are among the most consistently affected
by OSA.12–14 Although differences are seen when
treating OSA as a dichotomous variable, a dose-
response relationship between OSA severity and
level of inattention has not been shown.15

Batool-Anwar and coworkers15 found significant
worsening of attention as measured by the psy-
chomotor vigilance test (PVT) associated with the
Epworth Sleepiness Scale (ESS) and Pittsburgh
Sleep Quality Index. Results were adjusted for
age but not IQ. Olaithe and colleagues16 also failed
to find a correlation betweenmeasures of attention
and apnea hypopnea index (AHI), even when con-
trolling for age and premorbid intelligence. The in-
vestigators hypothesized that hypercapnia is
inversely proportional to cognition given evidence
that hypercapnia severity correlates with overall
neurocognitive impairment.17 Given the clear as-
sociation between vigilance and driving ability,
with implications for public safety, efforts have
been underway to predict risk for MVAs in persons
with OSA. Wong and colleagues18 investigated the
effects of 40 hours of sleep deprivation on cogni-
tion and simulated driving performance in OSA pa-
tients as compared with healthy controls. Vigilance
was measured with the PVT. They found no asso-
ciation between OSA and attention, driving perfor-
mance, or subjective sleepiness. Vakulin and
colleagues19 used the Stroop test to measure
focused and selective attention in OSA patients
undergoing driving simulator testing after normal
sleep with or without alcohol, or sleep restriction.
There was no association between poor driving
performance and Stroop test outcomes. Recently,
Karimi and colleagues20 used the Gothenburg
Sleep Resistance Test (GOSLING) to assess sus-
tained attention in OSA patients with and without
a MVA. Both reaction time and the proportion of
lapses were significantly higher in OSA patients
with a MVA. This study failed to show a dose-
response relationship between OSA severity and
MVA risk. Gozal and colleagues21 proposed ge-
netic differences to explain susceptible versus
resilient OSA patients.
OBSTRUCTIVE SLEEP APNEA EFFECTS ON
VERBAL MEMORY

Verbal memory can be divided into immediate
recall, verbal learning, verbal delayed recall, and
verbal recognition. A meta-analysis compiled by
Wallace and Bucks22 included studies using tests
designed to provide delineation of these memory
domains such as the Buschke Selective Remind-
ing Test and the California Verbal Learning Test.
OSA was found to have a medium adverse effect
on verbal immediate recall compared with norm
and control referenced data. OSA had a medium
effect on verbal learning compared with controls
and no significant effect compared with norms.
There was a more consistent medium effect on
verbal delayed recall using these reference sets.
Verbal recognition, however, was not affected
when comparing OSA to norm subjects and signif-
icantly affected compared with patients without
OSA. The variability for verbal data could not be
explained by age, publication status, study design,
sample source, or disease severity. In addition,
screening by polysomnogram or questionnaire
did not affect the significance of results. A recent
study by Hoth and colleagues23 examined the dif-
ferential effects of hypoxemia on memory. Forty
subjects with an average AHI of 37.8/h of sleep
were divided into relatively mild and severe hypox-
emia groups based onminimum oxygen saturation
and time less than 90% blood oxygenation. The
mild group spent no more than 6% of sleep time
less than 90%, whereas this was at least 20%
for the severe group. Surprisingly, the severe hyp-
oxemia group performed better on tests of imme-
diate and delayed verbal recall. Compared with
normative data, the severe hypoxemia group was
average, but the low hypoxemia group was
borderline low. This counterintuitive result is
supported by studies in humans and animals
demonstrating protective effects of intermittent
hypoxemia for the brain and cardiovascular sys-
tem.24 Another study suggested that intermittent
hypoxemia in rat brains can decrease nitric oxide
related toxicity.25

Ramos and coworkers26 evaluated the effects of
OSA in a Hispanic/Latino population. Neurocogni-
tive tests included the Brief-Spanish English Ver-
bal Learning Test. The mean AHI was 9.0 with a
range of 0 to 142. One of the important findings
was that women were more likely to have verbal
memory and learning deficits associated with
OSA compared with men. Although the prevalence
of OSA is higher in men,1 there has been some
suggestion that women are more susceptible to
the effects of OSA at lower AHI levels.27

Edwards and colleagues28 examined the effect
of moderate to severe OSA on several neurocog-
nitive domains, including learning and memory
(L/M). OSA severity was based on AHI and oxygen
desaturation index (ODI). Verbal and visual test re-
sults were grouped. In addition, blood cortisol
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levels were measured over a 24-hour period. ODI,
but not AHI, severity was associated with 24-hour
cortisol levels. AHI, ODI, and cortisol levels were all
associated with L/M deficits. The investigators hy-
pothesized that sympathetic overactivity manifest
through the hypothalamic-pituitary-adrenal axis,
as opposed to the apneas themselves, was
responsible for neurocognitive impairment.

A review by Vaessen and colleagues29 focused
on subjective neurocognitive complaints com-
paring OSA patients to controls. They did not
find a consistent memory complaint for OSA pa-
tients and attributed this in part to small sample
sizes. It should also be noted that due to the
gradual progression of OSA, these persons are
not always aware of their deficits, which has signif-
icant implications for identification and treatment
of OSA and undoubtedly contributes to the esti-
mated large percentage of untreated individuals.30
OBSTRUCTIVE SLEEP APNEA EFFECTS ON
VISUAL AND VISUOSPATIAL MEMORY

Analogous to verbal memory, visual memory con-
sists of immediate recall, delayed recall, and
recognition. There is a paucity of data examining
the effect of OSA on this neurocognitive domain.
The meta-analysis of Wallace and Bucks22

showed visual immediate recall to be unimpaired
for OSA patients compared with norms and con-
trols. This unexpected finding was thought to be
due to limitations in matching OSA to non-OSA
data. They did not identify enough studies to
qualify for meta-analysis of visual delayed recall
or recognition.

Visuospatial memory involves recall of how im-
age components relate to each other and is typi-
cally tested using a drawing task or recalling a
specific image location. Effects of OSA vary
depending on the comparison data.22 Using con-
trol references, medium deficits were found in
immediate and delayed visuospatial recall. No sig-
nificant deficit was found compared with norms.
The 2 studies identified testing visuospatial
learning had conflicting results rendering the over-
all analysis insignificant. There were insufficient
data to draw any conclusions regarding visuospa-
tial recognition.

Lau and colleagues31 recently reported effects
of OSA on cognition including immediate and
delayed visual memory in a Chinese cohort. Sub-
jects with moderate to severe OSA (AHI >15)
were compared with controls. They found a signif-
icant medium negative effect on delayed visual
recall but no significant effect on visual learning.
Further studies are needed to explore the effects
of OSA on visual memory.
OBSTRUCTIVE SLEEP APNEA EFFECTS ON
PSYCHOMOTOR FUNCTION AND
PROCEDURAL MEMORY

Psychomotor function represents neurocognitive
processing speed and is often measured by
2-hand coordination or reaction times. The meta-
review by Bucks and colleagues12 found an effect
of OSA on psychomotor function in only 2 of 5
studies. No clear relationship with disease severity
was identified. Only 2 of the 5 reviews considered
age as a potential influence but found no relation-
ship with cognition. None of the studies consid-
ered premorbid IQ as confounding factor.
Kilpinen and colleagues32 reviewed the effects of
OSA on information processing, including psycho-
motor performance. Six of the studies reviewed
used tests assessing pure psychomotor speed.
Four of the 6 studies showed deficits associated
with OSA. The review by Lal and colleagues33 indi-
cated fine-motor coordination to be diminished by
OSA but motor speed was unimpaired.

The study by Ramos and colleagues26 exam-
ined the effects of mild to moderate OSA on pro-
cessing speed using the digit symbol substitution
test (DSST). A deficit was seen for older women
but not men in the unadjusted model. Accounting
for age, education, sex, and other comorbidities
eliminated a significant relationship. Although a
large cohort of 8000 was included, the relatively
lower mean AHI of 9.0 per hour may explain the
lack of effect. Bawden and colleagues34 also
used the DSST to study the effects of OSA on psy-
chomotor performance. Roughly 75% of the OSA
subjects had moderate to severe disease. Control
subjects were matched for age and education.
OSA subjects were slower than controls but had
fewer errors.

There is evidence that motor skill learning is also
affected by OSA. Landry and colleagues35

compared subjects with moderate OSA (mean
AHI: 25.0) to controls matched for age and educa-
tion. Performance on the sequential finger tapping
task showed similar rates of improvement for OSA
and control subjects in the evening. There was
however a trend toward worse performance by
OSA subjects with fewer typed sequences. The
following morning, control subjects showed a
significantly greater rate of improvement (15.4%)
over baseline compared with OSA sufferers
(1.8%). This greater rate of improvement was
thought to reflect impaired memory consolidation
and learning due to worse sleep quality for the
OSA group. In a similar study, Djonlagic and col-
leagues36 compared performance on a motor
sequence learning task (MST) for moderate OSA
subjects (mean AHI: 17.1) with age and subjective
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sleepiness-matched controls. There was no differ-
ence in rate of improvement with practice in the
evening. Significantly greater improvement was
noted the following morning for the control group.
Subjects without OSA showed 14.7% improve-
ment after a night of sleep compared with just
1.1% improvement for the OSA group. These re-
sults were not explained by diminished attention
in the OSA subjects as PVT results were similar
for both groups. This difference remained despite
multiple learning trials in the morning. By matching
sleep architecture for the 2 groups, the investiga-
tors were able to demonstrate a significant inverse
correlation between arousal index and MST
improvement. The same relationship was noted
but less robust for AHI and MST scores. There
was no such finding for oxygen saturation mea-
sures. Therefore, consolidation of procedure
memory appears to be affected by sleep fragmen-
tation but not oxygen desaturations.
OBSTRUCTIVE SLEEP APNEA EFFECTS ON
EXECUTIVE FUNCTION

Olaithe and Bucks37 examined the effects of OSA
on various aspects of executive function, including
shifting or mental flexibility, updating or changing
working memory, inhibition, generativity or ability
to access long term memory, and fluid reasoning,
in a recent meta-analysis. Studies included pa-
tients with AHI greater than 5.0 compared with
controls. Medium effect sizes were seen for shift-
ing and generativity. Large effects were seen for
updating and fluid reasoning. A very large effect
was seen for inhibition. Because there were rela-
tively few subjects with mild or moderate OSA, a
dose-response over the full range of AHI severity
could not be determined. Nonetheless, compari-
son of severe to very severe OSA did not reveal
a graded effect on cognition. This review was not
able to distinguish whether the deficits in execu-
tive function were directly due to OSA or to exces-
sive daytime sleepiness from OSA.
Executive function can be divided into several

subdomains. In addition to more traditional as-
pects of executive function including planning,
cognitive shifting, and inhibition, Borges and col-
leagues38 chose updating or the ability to change
the content of working memory as well as dual
task performance, and efficient access to long-
term memory to analyze effects of OSA. Moderate
to severe OSA subjects were compared with con-
trols matched for age, IQ, and education. All
subjects were free of diabetes, hypertension, or
depression and had body mass indexes less
than 26 kg/m2. No significant differences were
found for any aspects of executive function
between the OSA and control groups. The investi-
gators suggested that comorbidities, including
obesity, hypertension, diabetes, and depression,
alone or in combination with OSA, may play a
greater role in executive dysfunction than OSA
alone.
Several studies have looked at effects of OSA on

certain aspects of executive function as part of a
larger examination of neurocognitive domains in
the setting of sleep-disordered breathing.16,39–44

Four of the studies showed executive function def-
icits associated with OSA.39,41,43,44 Two of the
studies did not show any effect of OSA on execu-
tive function.16,40 One study had mixed results.42

Although all studies except one42 used the trail
making test B, results were not consistently item-
ized for each test. Therefore, it was difficult to
make direct comparisons as to the relative signifi-
cance of individual findings.
OBSTRUCTIVE SLEEP APNEA EFFECTS ON
OVERALL IQ

Several reviews have reported on the effects of
OSA on global cognitive function.14,33,45 The
meta-review by Bucks and colleagues12 found
deficits in 2 of 4 reviews. It was suggested that
hypoxemia may have more of an impact on overall
IQ than sleep fragmentation. More recently, Can-
essa and colleagues41 used the Mini-Mental State
Evaluation (MMSE) to assess global cognition in
controls and subjects with severe OSA. They
found no significant difference in MMSE scores.
The MrOS study40 also examined cognition in a
large cohort (n 5 2636) of community-dwelling
older men with mild versus moderate OSA fol-
lowed an average of 3.4 years. The Modified
MMSE (3MS), a more sensitive instrument than
the MMSE, was used to measure overall cognition.
They found that men with 1% or more of sleep time
with oxygen saturation less than 90% had a
greater decline on the 3MS compared with men
with less than 1% of their sleep time less than
90%. No significant association between AHI
and 3MS was found. A previous cross-sectional
study of the same cohort did not reveal any asso-
ciation between sleep-related hypoxemia and the
3MS. It was hypothesized that oxidative stress,
impaired glucose tolerance, and inflammation rep-
resented the pathologic response to sleep-related
hypoxemia resulting in neurocognitive decline.
The effect of OSA on cognition has also been

evaluated in older women. A prospective study
by Yaffe and colleagues46 evaluated 298 women
(average age 82.3 years) without dementia and
found that those with at least moderate OSA
(defined as an AHI � 15 per hour of sleep) at
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mean follow-up of 4.7 years were more likely to
have mild cognitive impairment or dementia
compared with women with AHI less than 15 per
hour of sleep, even after adjusting for potential
confounders (odds ratio 1.85; 95% confidence in-
terval, 1.11–3.08). ODI and increased sleep time in
apnea or hypopnea were also associated with
cognitive decline; however, measures of sleep
fragmentation were not.
NEUROCOGNITIVE EFFECTS OF OBSTRUCTIVE
SLEEP APNEA FOR CHILDREN

The prevalence of OSA has been estimated at
13% to 66% in obese children47–50 and 1.2% to
5.7% in nonobese children.51 Neurocognitive
development is a particularly critical aspect of
maturation during childhood. These findings may
have implications for overall IQ in later years. A
recent review52 noted any severity of OSA and
even snoring increases the risk for problems with
attention, executive function, behavior, and scho-
lastic performance in children.

Bourke and colleagues53 looked at children
aged 7 to 12 classified as controls, snorers, mild
OSA, andmoderate/severe OSA. Overall cognition
and executive function were measured. In addi-
tion, reading, spelling, and arithmetical skills
were assessed. They found significantly lower
full-scale and verbal IQ scores for all other groups
compared with controls. Although nonverbal and
performance IQ scores were lower than controls,
these findings did not reach statistical signifi-
cance. Executive function was not significantly
different for snorers or OSA subjects as compared
with controls. Similarly, reading, spelling, and
arithmetical skills did not differ between snorers,
OSA subjects, and controls. These results support
the importance of treating snoring as well as mild
and severe sleep-disordered breathing in children.

Another study by Jackman and colleagues54

evaluated behavior as well as cognition in pre-
school children (age 3–5) also divided into con-
trols, snorers, mild, and moderate/severe OSA.
Behavior in the home was assessed by standard-
ized parental rating. Snorers and mild OSA sub-
jects were found to have poorer behavior
compared with controls. For some behaviors,
these 2 groups were even worse than the moder-
ate/severe OSA group. No differences were seen
for measures of global intelligence, attention,
language, visuospatial ability, fine-motor skills,
memory, or executive function. The investigators
speculated that behavioral dysfunction was due
to a higher degree of sleep fragmentation not
captured by current measurement techniques
in this pediatric population. They furthermore
reasoned that a greater drive to protect the brain
from hypoxia at the expense of sleep consolida-
tion produced these findings.

Landau and coworkers55 studied children with
of mean age 45 months (�9 months) with OSA
(mean AHI 13.2 � 10.7) compared with age-
matched controls. They assessed cognition,
behavior, and quality of life. Impairment of execu-
tive function (planning and fluency), attention, and
receptive vocabulary were noted for OSA subjects
compared with controls using the Kaufman
assessment battery for children but not for the
Behavior Rating Inventory of Executive Function-
Preschool version (BRIEF-P). This correlates with
the Jackman study that also used the BRIEF-P to
assess executive function. Landau, like Jackman,
also found more behavior problems in the OSA
group. In addition, Landau documented worse
quality of life in OSA children compared with con-
trols. This study underscores the impact of OSA in
early childhood and the importance of identifying
and treating OSA in this population.

Other reports in children age 7 to 15 with OSA
have shown deficits in working memory,56,57 psy-
chomotor efficiency,57 executive function,58 and
IQ.59 Variability of results can in part be seen due
to varying tests to assess particular neurocognitive
domains.
IMAGING: MAGNETIC RESONANCE
SPECTROSCOPY, DIFFUSION TENSOR
IMAGING, FUNCTIONAL MRI STUDIES

In the last few years, imaging modalities, including
MRI, magnetic resonance spectroscopy (MRS),
functional MRI (fMRI), and diffusion tensor imaging
(DTI), have provided insights into structural, func-
tional, and metabolic correlates of the neurocogni-
tive effects of OSA. Recent reviews60–62 have
highlighted volume loss in the anterior cingulate,
hippocampus, frontal, parietal, and temporal lobes
associated with OSA severity. The study by
Canessa and colleagues41 used voxel-based
morphometry (VBM) analysis of MRI-T1 images
to assess gray-matter (GM) volumes and cognition
in subjects with severe OSA compared with age-
and education-matched controls. Reduced GM
volume in left hippocampus, left posterior parietal
cortex, and right superior frontal gyrus correlated
with significant impairment in short- and long-
term verbal memory, constructional ability, atten-
tion, and especially executive function.

Castronovo and coworkers43 examined white
matter (WM) tracts with DTI along with assess-
ments of similar neurocognitive domains in severe
OSA subjects compared with age- and education-
matched controls. As opposed to correlating with
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gross numbers of neurons such as with VBM tech-
niques, the fractional anisotropy evaluation of DTI
attempts to determine the integrity of groups of
neurons working together as functional units. Neu-
rocognitive deficits involving attention, executive
function, and memory were associated with
diffuse reduction of WM tract integrity involving
the bilateral parietal and frontal lobes. These
changes are thought to contribute to slowed infor-
mation processing.
O’Donoghue and colleagues44 applied MRS to

elucidate effects of severe OSA on neuronal
viability. Vigilance, memory, and executive func-
tion were quantified as well and compared with
age-matched controls. Although changes sugges-
tive of decreased frontal lobe neuronal viability
were seen, there were no correlations with neuro-
cognitive function. Cerebral metabolite concentra-
tions did, however, correlate with OSA severity.
Zhang and colleagues63 used a visual mismatch

task to show changes in fMRI activation for severe
OSA subjects compared with age- and education-
matched controls. They found reduced frontal
activation in the anterior cingulate cortices (ACC),
middle frontal gyri, and inferior frontal gyri, but
increased activity in the right anterior prefrontal
gyri (aPFG). Reaction times were significantly
slower for OSA subjects. These results along
with lower frontal activation were associated with
duration of time below oxygen saturation less
than 80% and arousal index. Other measures of
sleep-disordered breathing, such as the apnea,
hypopnea, and desaturation indices, showed no
such relationship. These data indicate that oxygen
desaturation and sleep fragmentation play a role in
executive dysfunction for tasks such as this. Ef-
fects on reaction time implicate circuits respon-
sible for the transfer of information as opposed
to a primary failure of neuronal units per se.
Furthermore, the increased right aPFG activity
suggests a compensatory response needed for
OSA subjects to complete the mismatch task.
MECHANISMS OF OBSTRUCTIVE SLEEP
APNEA EFFECTS ON COGNITION

The intermittent hypoxia (IH) and sleep fragmenta-
tion seen in OSA provide a link between sleep-
disordered breathing and impairment over a range
of neurocognitive domains as asserted by Gozal.64

To further elucidate the mechanisms of neuronal
damage due to IH, Sapin and colleagues65

exposed mice to 1 day (acute) versus 6 or
24 weeks (chronic) of IH. They found that chronic
but not acute IH was associated with significant
microglial changes in the dorsal hippocampus.
Acute but not chronic IH increased cytokines
associated with neuro-inflammation. These find-
ings complement the data showing impaired
memory and learning in human OSA subjects.
Smith and colleagues66 showed increases in in-
flammatory gene expression of cortical microglia
for rats exposed to IH.
Sales and colleagues67 measured cognition and

biomarkers of oxidative stress in subjects with se-
vere OSA and age-matched controls. Vitamin E,
superoxide dismutase (SOD), and vitamin B11
were lower, while homocysteine was higher in
OSA subjects. These subjects also performed
worse on measures of attention, executive func-
tion, working, verbal, and delayed visual memory.
An association was found between executive
function measures and vitamin E levels as well as
SOD. Nair and colleagues68 identified NADPH ox-
idase as the driving force of oxidative stress
induced spatial learning impairments in mice
exposed to IH.
Sleep fragmentation has also been implicated in

neurocognitive dysfunction mediated by neuro-
inflammation. Ramesh and colleagues69 used a
mouse model to examine the effects of disrupted
sleep without reduced total sleep on cognition in
mice. They found an association between poor
spatial learning, memory, sleepiness, and
increased cortical expression of tumor necrosis
factor-a (TNF-a). They further demonstrated the
absence of sleepiness or neurocognitive dysfunc-
tion in TNF-a double receptor knockout mice.
Last, mice treated with a TNF-a neutralizing anti-
body did not develop sleepiness or neurocognitive
dysfunction despite sleep fragmentation.
Sympathetic overdrive is another potential

mechanism by which OSA affects cognition.
Goya and colleagues70 measured muscle sympa-
thetic nerve activity (MSNA) in subjects with se-
vere OSA and persons with mild OSA matched
for age and education. Baseline MSNA was higher
in severe OSA subjects. Further MSNA increases
and worse executive function were seen in severe
versus mild OSA subjects. The study by Fatouleh
and colleagues71 showed increased activation in
the bilateral dorsolateral PFC, medial PFC, dorsal
precuneus, ACC, retrosplenial cortex, and
caudate nucleus associated with increased
MSNA in OSA subjects. These cerebral areas are
known to be involved in modulation of sympathetic
outflow.
IMPACT OF CONTINUOUS POSITIVE AIR
PRESSURE

CPAP is the most commonly prescribed treatment
of OSA. This therapy has been shown to eliminate
respiratory disturbances and improve daytime
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alertness.72 Its effect on domains of neuro-
cognitive function has been less consistently
demonstrated.

The previously described meta-analysis by
Olaithe and Bucks described reductions in OSA-
related impairment across 5 subcomponents of
executive function (ie, shifting, updating, inhibiting,
generating, and fluid reasoning) with CPAP ther-
apy.37 Although age and disease severity did not
moderate these outcomes, this review was unable
to exclude the effects of premorbid intelligence
because not all included studies provided this
information.

In a multicenter study of 174 subjects with mod-
erate to severe OSA, measures of subjective and
objective sleepiness and neurocognitive function
were assessed before and after 3 months of
CPAP therapy.73 In regard to daytime sleepiness,
CPAP treatment resulted in a marked and dose-
dependent reduction in subjective daytime sleepi-
ness (ESS) but did not affect Maintenance of
Wakefulness Test–derived mean sleep latencies.
Nearly 20% of subjects who used CPAP for more
than 7 hours per night had abnormal sleepiness
scores despite seemingly adequate use. There
were significant improvements in verbal memory
and executive function but not vigilance among
these subjects at 3 months.

Research protocols attempting to determine the
impact of CPAP therapy on neurocognitive out-
comes have been hampered by a variety of meth-
odological factors. In an effort to address many of
these limitations, a large multicenter study (AP-
PLES) randomly assigned 1105 subjects diag-
nosed with OSA to either active CPAP or sham
CPAP.74 CPAP use for the active arm averaged
4.2 hours per night. At 2- and 6-month follow-up,
subjective and objective sleepiness were signifi-
cantly reduced in actively treated participants
and most prominently among those with severe
OSA (AHI >30). The primary measure of executive
and frontal-lobe function (E/F) was improved at
2 months in the active CPAP group compared
with sham CPAP, but no differences were noted
among groups in regard to measures of L/M or
attention and psychomotor function (A/P) at 2 or
6months. Further stratification bymarkers of sleep
apnea severity (AHI or oxygen desaturation)
resulted in transient differences among study
arms in the primary E/F and one secondary E/F
variable.74 The study may have been somewhat
limited by the absence of a healthy control group
and the overall intelligence of the participants,
who may have had relatively high neurocognitive
reserve. However, adjustment for IQ did not alter
the findings. Despite the lack of robust neurocog-
nitive improvements with CPAP therapy, it is
possible that the neurocognitive benefits related
to CPAP may require more than 6 hours of use
per night43 or perhaps may occur among a genet-
ically unique subset of subjects.

Lin and colleagues75 recently investigated the
effect of good versus suboptimal CPAP compli-
ance on neurocognitive measures (CANTAB). Sub-
jects that used CPAP for more than 70% of nights
over 3 months had improvements in decision mak-
ing and response control domains compared with
less adherent subjects.

The effects of CPAP therapy on neurocognitive
function specifically among older adults have
been studied and have demonstrated inconsistent
benefit. Gutierrez Iglesias and colleagues76 found
CPAP treatment was beneficial for selective and
divided attention, working memory, verbal and
short-term memory, and visual long-termmemory.

In the PROOF study, Crawford-Achour and col-
leagues77 assessed the benefit of CPAP therapy
on neurocognitive outcomes in those 65 years of
age and older with severe OSA at baseline and at
10-year follow-up. Those subjects that received
CPAP were very compliant with a mean usage of
more than 6 hours per night. Compared with un-
treated controls, CPAP users demonstrated main-
tenance of memory and improvements in mental
abilities. The limitations of this study are noteworthy
as treated subjects were few (26% of sample), had
worse OSA severity (higher AHI and ODI), were
more symptomatic (higher ESS) at baseline, and
were selected to receive therapy at the discretion
of their primary care physician. Another study of
CPAP therapy in older adults with OSA found im-
provements in daytime sleepiness at 3 months,
particularly in those with increased CPAP use and
higher scores on pretreatment ESS. These benefits
were shown at 12 months but were not seen for
other neurocognitive measures (MMSE, Trail Mak-
ingTest-B,DSST, andsimple and4-choice reaction
time), which remained unchanged at 12 months.78

CPAP therapy may provide cognitive benefits in
patients with neurodegenerative disorders. In a
recent study by Troussière and colleagues,79 those
subjects with mild-to-moderate Alzheimer disease
and severe OSA who used CPAP had significantly
less cognitivedecline at 3-year follow-up compared
with an otherwise matched non-CPAP group.

There is increasing evidence that CPAP therapy
can reverse sleep apnea–related brain morpho-
logic changes. The Canessa study, described pre-
viously, reported reversal of GM volume
decrements after 3 months of CPAP treatment in
specific hippocampal and frontal regions that
correlated with improvements in memory, atten-
tion, and executive function.41 Other investigators
using brain MRS44 found 6 months of CPAP



Fig. 1. Green area represents OSA
effect on executive function that
is localized to the frontal lobe.
(Ron Hill/Act 3 LLC, www.act3
creative.com. Data from Castronovo
V, Scifo P, Castellano A, et al. White
matter integrity in obstructive sleep
apnea before and after treatment.
Sleep 2014;37(9):1465–75.)
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therapy did not improve metabolite ratios in the
frontal lobe but did eliminate significant differ-
ences for the hippocampus compared with con-
trols. Although measures of vigilance and
executive function showed some improvement
with this length of CPAP treatment, cerebral
metabolite concentrations did not correlate with
neurocognitive test results.
The effects of 3 and 12 months of CPAP therapy

on WM fiber integrity, as measured by DTI, and
neurocognitive performance were assessed in 17
positive air pressure–naı̈ve OSA subjects and 15
healthy controls.43 Despite only limited changes
noted in WM integrity among treated subjects at
3 months, there was near complete normalization
in affected regions in CPAP-compliant subjects
at 1 year. These changes paralleled neurocogni-
tive test improvements in memory, attention, and
executive function.
CONTINUOUS POSITIVE AIR PRESSURE
WITHDRAWAL

Others have evaluated the consequences of acute
and short-term CPAP withdrawal on neurocogni-
tive outcomes. In a study by Filtness and
colleagues,80 11 subjects who were deemed
long-term (mean 7.8 years) CPAP compliant users
underwent 2 daytime driving simulations, one
following regular nighttime CPAP use and the
other after sleeping one night without therapy.
There were significantly more driving incidents,
decreased latency to first incident, marked in-
crease in a and q electroencephalogram activity
and increased subjective sleepiness the day
following CPAP withdrawal. Two nights of CPAP
withdrawal among participants with either mild to
moderate or severe OSA were associated with
reappearance of both subjective and objective
Fig. 2. Green area represents OSA
effect on memory that is localized
to the hippocampus. (Ron Hill/
Act 3 LLC, www.act3creative.com.
Data from Castronovo V, Scifo P,
Castellano A, et al. White matter
integrity in obstructive sleep apnea
before and after treatment. Sleep
2014;37(9):1465–75.)

http://www.act3creative.com
http://www.act3creative.com
http://www.act3creative.com


Fig. 3. Green area represents OSA
effect on abstract reasoning that is
localized to the parietal lobe. (Ron
Hill/Act 3 LLC, www.act3creative.
com. Data from Castronovo V, Scifo
P, Castellano A, et al. White matter
integrity in obstructive sleep apnea
before and after treatment. Sleep
2014;37(9):1465–75.)
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sleepiness and altered vigilance testing to pre-
treatment levels.81 However, psychomotor perfor-
mance measures of divided attention and
vigilance were not significantly altered by 2 weeks
of CPAP discontinuation in a study conducted by
Kohler and colleagues.82

SUMMARY

Studies have shown that OSA can impair attention,
verbal memory, executive function, and learning.
Affected cognitive domains that localize to
discrete regions of the brain, with documented
structural changes, are shown in Figs. 1–3. There
is a paucity of data examining OSA effects on
delayed visual memory, visual perception, and vi-
suospatial memory. Imaging modalities including
MRI with VBM, DTI, MRS, and fMRI provide insight
into the impact of OSA on brain structure and func-
tion. Magnetic resonance elastography is a rela-
tively new technique to measure brain tissue
integrity that could further expand this knowl-
edge.83 Mechanisms of cerebral remodeling
include neuro-inflammation, oxidative stress, and
sympathetic overactivation. CPAP use of at least
4 hours per night improves executive function at
2 months. CPAP use of 6 hours or more may pro-
vide additional neurocognitive improvement for
vulnerable populations with decreased neurocog-
nitive reserve in the setting of aging and comorbid-
ities, such as cardiovascular disease, diabetes,
mild cognitive impairment, and Alzheimer demen-
tia. Genetic profiles may also help predict neuro-
cognitive effects of CPAP. Further studies are
needed to elucidate mechanisms of neurocogni-
tive impairment and identify factors most likely to
enhance the beneficial effects of CPAP on cogni-
tion for OSA patients.
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