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Hypoxia is an important factor in tumor biology and is both a predictive and a prognostic factor
in non–small cell lung cancer. The negative effect of low oxygenation on radiation therapy
effect has been known for decades, but more recent research has emphasized that hypoxia
also has a profound effect on a tumor’s aggression and metastatic propensity. In this review,
current knowledge on both these aspects of treatment failure in NSCLC due to hypoxia has
been discussed, along with a presentation of modern methods for hypoxia measurement and
current therapeutical interventions to circumvent the negative effect of hypoxia on treatment
results.
Semin Radiat Oncol 25:87-92 C 2015 Elsevier Inc. All rights reserved.
Hypoxia has been recognized as an important factor in
tumor biology and therapy response since the first half of

the 1900s, and hypoxia-mediated radiation resistance was first
described by Gray et al1 in 1953. Well-oxygenated tumors
respond better to various therapies than hypoxic tumors do.
Therefore, hypoxia is a predictive factor. However, more
recently, emerging knowledge has underscored that hypoxia
is indeed also a prognostic factor, independently of therapy,
and that hypoxia in a tumor’s microenvironment induces a
more aggressive tumor phenotype.
A number of studies have suggested that hypoxia is highly

prevalent in non–small cell lung cancer (NSCLC), based both
on indirect measurements using hypoxia-dependent positron
emission tomography (PET) tracers and on direct measure-
ment of intratumoral oxygenation.2,3 The exact prevalence is
still not defined, because of both heterogeneous temporospa-
tial oxygen distribution and different measurement methods
and cut-off levels.
In this review, the factors involved in hypoxia-mediated

therapeutic failures of NSCLC have been discussed in the
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context of therapy resistance and as a tumor biology phenom-
enon per se.
Measurement of Hypoxia
Direct tissue oxygenation measurement using an electrode
such as the Eppendorf “histograph” should be regarded as the
gold standard for hypoxia evaluation.4 Such studies have
shown that nonneoplastic tissues, with a few exceptions, are
well oxygenated, with a pO2 of more than 12.5 mm Hg. The
oxygen concentration in arterial and venous blood is in the
ranges of 75-100 and 30-40 mm Hg, respectively. Most
tumors (including lung cancer) have a low pO2 of 0-
7.5 mm Hg.5 Notably, tumor oxygenation is very heteroge-
nous, both in time and space.
Invasive methods are of no practical use for evaluation of

hypoxia in clinical lung cancer settings, even though this
method has been employed intraoperatively on lung tumors.2

Indirect measurements in lung tumors, using hypoxia tracers
such as 18F-fluoroazomycin-arabinoside3 (which bind only
when pO2 is less than 10 mm Hg) and 18F-HX4, 18F-
fluoromisonidazole PET imaging, or magnetic resonance–
based techniques such as blood oxygen level–dependent or
dynamic contrast-enhanced methods, are more applicable in
routine practice. Interestingly, Trinkaus and coworkers, using
18F-fluoroazomycin-arabinoside-PET, showed intratumoral
hypoxia to be present in as many as 65% of NSCLC tumors
evaluated pretreatment. After concomitant chemoradiation,
normal oxygenation levels were found in most patients.3

However, because of the heterogeneous distribution and
87

http://dx.doi.org/10.1016/j.semradonc.2014.11.006
http://dx.doi.org/10.1016/j.semradonc.2014.11.006
http://dx.doi.org/10.1016/j.semradonc.2014.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.semradonc.2014.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.semradonc.2014.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.semradonc.2014.11.006&domain=pdf
mailto:otr@ous-hf.no


O.T. Brustugun88
instability over time of hypoxia, such indirect methods are
limited by a lack of resolution and provide no information on
temporal fluctuations. Repeated scans during the radiotherapy
course could be a way to overcome this. Horsman et al6 have
provided a recent comprehensive review of hypoxia imaging
techniques and their potential role in radiation planning.6 They
underscore the potential predictive value in noninvasive
quantification of hypoxia but also admit that more clinical
trials have to be performed to firmly prove the clinical value of
reversing hypoxia or using hypoxia levels for dose-delivery
guidance in radiation therapy.
Markers of hypoxia in tissues include pimonidazole, which

accumulates in hypoxic regions and can be administered
intravenously before carrying out a biopsy or surgical resection.
High concordance has been shown between preoperative
computed tomography parameters and hypoxia measured
by pimonidazole staining in corresponding resected lung
cancer tissue.7 Other markers include immunostaining of the
endogenous hypoxia-inducible factor (HIF) family of proteins
and their transcriptional targets.8 Prediction of tumor hypoxia
may also now be based on gene signatures, as exemplified in
studies on laryngeal cancer.9
Causes of Hypoxia
Oxygen molecules diffuse freely in normal tissues, with a
diffusion range of up to 200 mm. Innormal tissues, this range is
sufficient to oxygenate all cells, owing to a dense network of
capillaries. However, all solid tumors larger than 1 cm3 contain
hypoxic regions because of a number of factors: abnormal
microvessel structure and function leading to increased
diffusion distance from vessel to cell, increased oxygen
demand because of increased cellular proliferation, reduced
oxygen supply because of vascular constriction, and increased
interstitial pressure, partly because of abnormal leaky vessels
and resulting edema. Anemia and smoking, both frequently
associated with patients with lung cancer, add to the reduced
oxygen supply.5 Based on this, the diffusion range of oxygen in
tumor tissues may be much lower than in normal tissues, and
even cells adjacent to blood vessels can be hypoxic. Interest-
ingly, the presence of hypoxia does not correlate with tumor
volume or metabolically active volume, implying that hypoxia
is present in small and large tumors and is not an effect of size
per se.3
Chronic vs Acute Hypoxia
Oxygen levels gradually decrease by distance from micro-
capillaries, and hypoxia is typically seen at 100-180 mm from
the blood vessel. This effect leads to chronically hypoxic cells in
this sector. However, acute hypoxia because of transient
perfusion changes is also observed in tissues, and fluctuating
blood flow is frequently observed in tumor tissues.10 In acute
hypoxia, the supply of other nutrients also tends to be reduced,
leading to a potentially higher degree of therapy resistance than
in chronic hypoxia, where supply deprivation is mainly
confined to oxygen.
Experimental evidence exists of reduced expression of DNA
repair genes in chronic hypoxia, but not in acute hypoxia,
leading to a higher radiosensitivity in chronic hypoxic cells
than in cells exposed to acute hypoxia.11
Hypoxia and Treatment Failure
Hypoxia may be responsible for treatment failure through
2 main mechanisms: (1) a treatment-related effect owing to
reduced DNA damage and (2) an at least partially treatment-
independent effect through upregulation of a number of
factors, leading to a more aggressive tumor biology. The
former has been known for decades, and an array of
therapy-modulating perturbations have been tried. The latter,
however, is more recently acknowledged, and therapies
seeking to exploit these phenomena have just recently been
introduced. Tumor hypoxia as a prognostic factor, or pre-
dictive factor in radiation therapy, has not been as extensively
evaluated in NSCLC as in others such as head and neck
cancers. Still, several studies confirm the detrimental effect also
in NSCLC.12-14
Direct Influence of Hypoxia on
Radiation Effect
Heavily charged ion beams induce cell death via direct DNA
damage, but other radiation modalities, including protons and
photons, kill mainly indirectly via production of free radicals
(reactive oxygen species) that bind to DNA and induce strand
breaks. These free radicals are produced either directly in the
DNA or more commonly through reactions with water.
Oxygen stabilizes the chemical bond breaks in DNA and
makes the damage permanent or “fixed.” Therefore, in the
absence of oxygen, DNA is less vulnerable to permanent
damage, leading to relative radioresistance.15 It has been
shown that radiation dose has to be increased by 2- to 3-fold
to induce the same cell kill in a hypoxic milieus relative to
aerobic settings.5 However, it is important to underscore that
the exact mechanisms behind this “oxygen effect” are still not
completely understood, 60 years after the first observation of
its existence.
Interestingly, mathematical modeling of various fractiona-

tion schemes for optimization of tumor control probability
(TCP), taking into account hypoxia and reoxygenation as well
as cell proliferation and nutrient supply, outputs an optimal
daily dose of approximately 2 Gy. In this model, hypoxia
predicts a dose increase requirement of approximately 30% to
achieve similar TCP as seen under normoxic conditions.16

“Dose painting”, using information fromhypoxia imaging to
guide extra dosing to hypoxic tumor regions, has been
suggested as a method to overcome hypoxia-induced radio-
resistance in lung cancer.17 However, promising current
evidence for such heterogenous dose delivery is scarce,
regarding both the dose levels potentially needed and the
imaging limitations, as mentioned earlier.6
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For extremely hypofractionated regimens, such as stereo-
tactic ablative radiotherapy (SABR) of lung tumors, classical
radiobiology laws may not be applicable.18 Conventional
wisdom points to the effect of reoxygenation of hypoxic
regions as a major principle for the superiority of fractionated
regimens over hypofractionated ones. However, arguments
exist that the linear quadratic model is valid for SABR doses as
for 2-Gy fractions, as long as the hypoxia factor is taken into
account.19 Hypoxia is also thought to contribute to the
surprisingly (based on simple linear quadratic model calcu-
lations) high biologically effective dose needed to achieve
sufficient TCP in SABR, as in lung cancer, where biologically
effective dose less than 100 Gy leads to relatively high relapse
rates.20 Moreover, this implies that hypoxic radiosensitizers
may also potentiate the effect of very high doses. Notably,
ablative doses greater than 9 Gy facilitate cancer cell death via
mechanisms not seen with conventionally fractionated regi-
mens, such as acute vascular damage, thusmodifying the effect
of hypoxia.21,22
Hypoxia-Inducible Factor
HIF-1 is an intracellular protein whose transcriptional activity
is increased in response to various cellular stresses, including
hypoxia.23,24 HIF-1 consists of a labile unit (HIF-1α) and a
stable unit (HIF-1β), which heterodimerize to be transcrip-
tionally active. In normoxia, HIF-1α undergoes proteolysis
induced by hydroxylation of the oxygen-dependent degrada-
tion (ODD) domain by the prolyl-4-hydroxylase domain
family of proteins which are activated in the presence of
molecular oxygen. Following ODD hydroxylation, ubiquiti-
nation via the von Hippel-Lindau complex occurs, resulting in
a very low level of HIF heterodimers in aerobic conditions.25 In
hypoxia, degradation of the α-unit is reduced, leading to an
increased level of the functional heterodimer, which via
binding to hypoxia response elements induces expression of
a multitude of genes. Notably, in extreme hypoxia or anoxia,
HIF-1α level is again low, probably because of lack of glucose,
which is required for the stabilization of theα-subunit.26HIF-1
is also regulated by other factors apart from or in concert with
molecular oxygen, including oncogenes, free radicals, and
growth factors, which may act via interaction with heat shock
protein 90 or phosphorylation.27,28 For instance, in certain
hypoxic experimental settings, free radicals are required to
stabilize HIF-1α, probably via cytochrome c–mediated elec-
tron shuttling.29 Furthermore, nitric oxide (NO) may also
affect HIF-1α degradation via modification of the ODD and
redistribution of oxygen frommitochondria to the cytosol.30 In
irradiated tumors, the protein kinase B/mammalian target of
rapamycin pathway is shown to regulate the HIF-1 level.31 In
addition, the NOTCH pathway is activated in hypoxic NSCLC
and induces radioresistance. High NOTCH expression corre-
lates with poor prognosis, and preclinical inhibition of
NOTCH indicates a therapeutic potential.32 Additionally,
cycling hypoxia (recurrent acute hypoxia) results in the
upregulation of HIF-1 to a level above what is seen in chronic
hypoxia.33 Finally, long noncoding RNAs are also involved in
HIF-1 regulation in lung cancer.34 In fact, underscoring the
complexity of HIF regulation, several studies show no corre-
lation between HIF-1 level, or level of HIF-1-regulated
proteins, and grade of hypoxia in tissues, measured by agents
such as pimonidazol.35

Hypoxia response elements are found in the promoter or
enhancement regions of various families of genes involved in
anaerobic metabolism,36 angiogenesis,37-39 antiapoptosis,40

and invasion and metastasis.41 Thus, on hypoxia-mediated
HIF-1 stabilization, a number of pathways are activated that are
involved in radioresistance, but which also are responsible for
an aggressive phenotype. One of the key downstream factors
upregulated by HIF-1 is miR-210, which is involved in a
multitude of hypoxia pathways42 and also found to be of
prognostic relevance in lung cancer.43

Lysyl oxidase (LOX) is upregulated in hypoxia via HIF-1
and has also been shown to be an independent prognostic
marker in lung cancer.44,45 LOX exerts its effect locally by
modifying the tumor microenvironment by cross-linking of
matrix proteins and by stimulating migration and invasive
behavior.46 Furthermore, hypoxia-induced secreted LOX can
act far away from its secretory origin, preparing the metastatic
niche by recruiting bone marrow cells and stimulating
endothelial cells to support establishment of distant metasta-
ses.47,48 Blockade of LOX has experimentally been shown to
reduce themetastatic propensity of tumors, implying that LOX
can serve as a target for metastasis-preventive therapy.47

HIF-1–mediated signaling regulates virtually every step of
the metastatic cascade, frommigration toward blood vessels to
intravasation through HIF-induced leaky endothelial cells.
Further, HIF-1 inhibits anoikis of circulating tumor cells,
and hypoxic primary tumors secrete factors that permeabilize
the endothelium at distant premetastatic sites. Finally, as
mentioned previously, secreted LOX may have prepared the
metastatic “soil” in the distant organ. For a detailed overview,
refer to the study byDe Bock et al.49 Adding to the complexity,
every element of the stromal compartment is also influenced
by hypoxia, including fibroblasts, immune, lymph, and blood
cells, each playing an important role in tumor progression.
These aspects have been recently reviewed by Casazza et al.50

It is of special interest in lung cancer epidermal growth factor
receptor (EGFR) is involved in several aspects of hypoxia.
Recently, hypoxia was shown to stimulate invasion via
invadopodia formation by histone deacetylase–mediated
EGFR activation.51 Furthermore, hypoxia may induce EGFR
activity via reduced endocytosis, which also may influence
other membrane-bound growth-stimulating, and thereby
cancer-promoting, proteins.52 Resistance to gefitinib, exten-
sively used in EGFR-mutated lung cancer, is also induced by
hypoxia via upregulation of insulinlike growth factor.53

Finally, EGFR has been shown to suppress specific tumor-
suppressing microRNAs in response to hypoxic stress through
posttranslational regulation of Dicer regulator AGO2.54

HIF and Radiation Therapy
A number of HIF-1–upregulated genes contribute to radio-
resistance, perhaps most important is the shift from glucose
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metabolism to a glycolytic phenotype, which was recently
reviewed by Meijer et al.55 This effect increases the cell’s
antioxidant capacity via accumulation of redox buffers such as
NADH/NADþ and glutathione, and thereby reduces the level
of free oxygen radicals produced by radiation, thus protecting
the DNA from damage.
Furthermore, accumulation of lactate acid because of

glycolysis induces stromal proteinases, thereby facilitating
tumor cell migration, inhibits immune cell activity and
stimulates tumor-promotingmacrophages, and induces angio-
genesis, all contributing to an aggressive phenotype of lung
tumors.55,56

Chronic hypoxic tumor cells can be categorized depending
on the HIF-1 level and the degree of pimonidazole staining.
Recently, dynamic in vivo studies have shown that HIF-1-
negative or pimonidazole-positive cells are more radioresistant
than other cells and that the HIF-1 level in these surviving cells
increases in response to radiation-induced reoxygenation.
Furthermore, cells acquiringHIF-1 secrete vascular endothelial
growth factor, resulting in vascular protection, and migrate
toward blood vessels, resulting in a metastatic phenotype.26

Interestingly, the grade of hypoxia in preirradiated lung tumors
may also be visualized using radiolabeled 2-nitroimidazoles,
such as 18F-HX4-PET/computed tomography, and has
recently shown to be of potential value in discriminating
tumor areas for increased dosing.57

Hypoxic tumors reoxygenate after radiation therapy, owing
to reduced demand because of cell death and increased
perfusion in tissues.58 Based on this, one would expect HIF-
1α levels to decline after radiation, but the opposite is observed.
This phenomenon is primarily caused by (1) increased level of
free radicals and (2) liberation of “stress granula” content, both
leading to stabilization of the HIF-1α subunit.59 The initial
HIF-1 increase occurs within hours of radiation. A few days
thereafter, increasedNOproduced by infiltratingmacrophages
induces a second peak of HIF-1 stabilization, via NO-mediated
prevention of HIF degradation through nitrosylation of a
cystein residue in the ODD.60 Both the initial and the later
increase of HIF levels may contribute to a more aggressive
phenotype and ultimately to treatment failure as cells become
more prone to invasion and metastasis.
Counteracting Hypoxia
Several hypoxia sensitizers are currently in clinical trials, but so
far, none are in routine use in lung cancer.61 Notably, a
number of studies on radiation therapy combinedwith various
hypoxia-directed therapies, have been conducted for NSCLC,
including those assessing carbogen,62 tirapazamine, (a cyto-
toxin selectively targeting hypoxic cells),63,64 and angiogenesis-
directed therapies, such as anti-vascular endothelial growth
factor, endostatin, or thalidomide.65,66 The results have been
mainly disappointing, producing significant toxicity but insig-
nificant survival gains. However, it should be noted that most,
if not all, of these studies included patients regardless of the
presence of tumor hypoxia. The results may have been
different had tumor hypoxia been an inclusion criteria.
The most promising strategies today might be HIF-1
inhibitors and drugs targeting glucose metabolism, which
should be further examined in the context of radiation therapy
in patients with hypoxic tumors.55 These studies should not
only be confined to fractionated therapy but may likely also
have a positive effect on SABR.
Heavy charged particle radiotherapy acts independently of

oxygen, as mentioned earlier, but emerging evidence points to
the involvement of the HIF-1 signaling pathway also in this
modality. In contrast to what is seen with photon radiation,
induction of HIF-1 is not seen with carbon ion therapy; on the
contrary, a significant downregulation was seen in a NSCLC
model. Furthermore, the protein kinase B/mammalian target of
rapamycin pathway, presumably inducing angiogenesis, was
also not affected by carbon ions, in contrast to the inducing
effect of photons.67 Thus, heavy charged particle irradiation is a
promising strategy also in lung cancer.
Conclusion
In conclusion, several lines of evidence point to tumor hypoxia
as a major cause of therapy failure and tumor aggression in
NSCLC involving a multitude of factors. As knowledge
emerges, it is evident that the relatively simple “oxygen effect”
attributed to radioresistance in hypoxic tumors is not the sole
cause of treatment failures. Given the still dismal prognosis of
NSCLC, further research into possible strategies to circumvent
the negative effect of hypoxia is highly warranted. Despite an
increasing recognition of the amazingly complex biology of this
phenomenon, the opportunities of therapeutic interventions
are also ample.
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