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ABSTRACT
The evolution of the modern human (Homo sapiens) cranium is characterized by a

reduction in the size of the feeding system, including reductions in the size of the

facial skeleton, postcanine teeth, and the muscles involved in biting and chewing.

The conventional view hypothesizes that gracilization of the human feeding system

is related to a shift toward eating foods that were less mechanically challenging to

consume and/or foods that were processed using tools before being ingested. This

hypothesis predicts that human feeding systems should not be well-configured to

produce forceful bites and that the cranium should be structurally weak. An

alternate hypothesis, based on the observation that humans have mechanically

efficient jaw adductors, states that the modern human face is adapted to generate

and withstand high biting forces. We used finite element analysis (FEA) to test two

opposing mechanical hypotheses: that compared to our closest living relative,

chimpanzees (Pan troglodytes), the modern human craniofacial skeleton is (1) less

well configured, or (2) better configured to generate and withstand high magnitude

bite forces. We considered intraspecific variation in our examination of human

feeding biomechanics by examining a sample of geographically diverse crania that
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differed notably in shape. We found that our biomechanical models of human crania

had broadly similar mechanical behavior despite their shape variation and were, on

average, less structurally stiff than the crania of chimpanzees during unilateral biting

when loaded with physiologically-scaled muscle loads. Our results also show that

modern humans are efficient producers of bite force, consistent with previous

analyses. However, highly tensile reaction forces were generated at the working

(biting) side jaw joint during unilateral molar bites in which the chewing muscles

were recruited with bilateral symmetry. In life, such a configuration would have

increased the risk of joint dislocation and constrained the maximum recruitment

levels of the masticatory muscles on the balancing (non-biting) side of the head. Our

results do not necessarily conflict with the hypothesis that anterior tooth (incisors,

canines, premolars) biting could have been selectively important in humans, although

the reduced size of the premolars in humans has been shown to increase the risk of

tooth crown fracture. We interpret our results to suggest that human craniofacial

evolution was probably not driven by selection for high magnitude unilateral biting,

and that increased masticatory muscle efficiency in humans is likely to be a secondary

byproduct of selection for some function unrelated to forceful biting behaviors. These

results are consistent with the hypothesis that a shift to softer foods and/or the

innovation of pre-oral food processing techniques relaxed selective pressures

maintaining craniofacial features that favor forceful biting and chewing behaviors,

leading to the characteristically small and gracile faces of modern humans.

Subjects Anthropology, Computational Biology, Evolutionary Studies, Anatomy and Physiology

Keywords Evolution, Loading, Bone strain, Cranium

INTRODUCTION
Human craniofacial architecture is extreme among living primate species. In particular,

modern humans (Homo sapiens) exhibit a tall braincase and a small and short maxilla

which distinguishes them from even our closest living relatives, the chimpanzees and

bonobos of genus Pan (Fleagle, Gilbert & Baden, 2010). Reductions in the size and

prognathism of the face, combined with increases in neurocranial globularity, have also

been shown to differentiate modern humans from some extinct members of the genus

Homo (Lieberman, McBratney & Krovitz, 2002). Homo exhibits an even more pronounced

reduction in the size and robusticity of the facial skeleton, as well as in the size of the

postcanine dentition and masticatory muscles (e.g., Robinson, 1954; Rak, 1983; Demes &

Creel, 1988), relative to australopiths, an extinct informal group of early hominins from

which modern humans are likely to be descended (e.g.,Walker, 1991;Wood, 1992; Skelton

& McHenry, 1992; Strait, Grine & Moniz, 1997; Strait & Grine, 2004; Kimbel, Rak &

Johanson, 2004; Berger et al., 2010). Theories purporting to explain the adaptive

significance of masticatory reduction inHomo frequently stress the importance of changes

in diet, usually involving a shift to foods that require less extensive intra-oral processing

(e.g., Robinson, 1954; Rak, 1983; Brace, Smith & Hunt, 1991; Wrangham et al., 1999;

Lieberman et al., 2004; Ungar, Grine & Teaford, 2006; Wood, 2009). However, Wroe et al.

(2010) suggest that modern human crania are instead adapted to produce forceful bites,
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based on their conclusion that the human feeding apparatus is mechanically efficient,

requires less muscle force than most other hominoids in order to generate comparable

bite reaction forces, and should therefore require a less robust structure. This paper

evaluates these two alternatives by comparing feeding biomechanics in modern H. sapiens

to that of chimpanzees (Pan troglodytes).

A conventional view of cranial gracilization in the lineage leading to modern Homo

states that this process was spurred by the development of stone tool technologies (e.g.,

Ungar, Grine & Teaford, 2006), as tool use reduces food particle size (Lucas, 2004),

allowing a reduced bite force per chew and/or fewer chews per feeding bout (Lucas & Luke,

1984; Agrawal et al., 1997; Zink & Lieberman, 2016). Under this hypothesis, tool use

reduces the selective advantage offered by anatomical features that increase muscle force

leverage and/or buttress the face against feeding loads. In addition to tool use, increased

reliance on meat eating may have played a role in the initial stages of masticatory

reduction in earlyHomo (Lieberman, 2008;Ungar, 2012; Zink & Lieberman, 2016). Further

gracilization of the jaws and teeth is hypothesized to have occurred with the advent of

cooking, which may have been practiced by H. erectus (Wrangham, 2009; Organ et al.,

2011), by reducing masticatory stresses (Lieberman et al., 2004; Lucas, 2004) and

increasing digestive efficiency (Wrangham et al., 1999; Carmody & Wrangham, 2009;

Carmody, Weintraub & Wrangham, 2011; Groopman, Carmody & Wrangham, 2015).

If gracilization in Homo is a consequence of the removal of selection pressure to maintain

and resist high magnitude or repetitive bite forces, then human feeding systems should

not be optimized to produce high biting forces and the cranium could be structurally

weak (i.e., exhibit high stress and strain when exposed to feeding loads).

The hypothesis described above is opposed by an alternative interpretation of human

feeding mechanics. A paradox of the human cranium is that the marked facial

orthognathism exhibited by recent modern humans increases the mechanical advantage

(i.e., leverage) of the muscles responsible for elevating the mandible, allowing humans to

generate a given bite force with relatively low muscular effort (Spencer & Demes, 1993;

O’Connor, Franciscus & Holton, 2005; Lieberman, 2008; Lieberman, 2011;Wroe et al., 2010;

Eng et al., 2013).Many studies interpret bite force efficiency among primate species as being

significant in an adaptive sense (Rak, 1983; Strait et al., 2013; Smith et al., 2015a; Ross &

Iriarte-Diaz, 2014), with increases in leverage predicted for species that rely on foods that

require forceful biting in order to be processed (e.g., hard seeds or nuts). Therefore, high

biting leverage among humans seemingly contrasts with the hypothesis that the human

craniofacial skeleton has experienced relaxed selection for traits that favor forceful biting

and chewing behaviors (e.g., Brace, Smith & Hunt, 1991; Lieberman et al., 2004; Ungar,

Grine &Teaford, 2006;Wood, 2009). However,Wroe et al. (2010) present an alternative view

based on their analysis of modern human, extant ape, and fossil australopith feeding

biomechanics. Using finite element analysis (FEA), Wroe et al. (2010) found that their

human finite elementmodel (FEM)wasmechanically more efficient at producing bite forces

than the other hominoids in their sample. Additionally, they found that the human cranium

experienced stresses similar to those in 3 of the 5 other specieswhenmodelswere scaled to the

same surface area and bite force, including Pan. Consequently,Wroe et al. (2010) conclude
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that the human skull need not be as robust in order to generate, or sustain, bite reaction forces

comparable to those of other hominoids, and that powerful biting behaviors may have been

selectively important in shaping the modern human cranium.

Here, we use FEA to test two opposing mechanical hypotheses: that relative to

chimpanzees, the modern human craniofacial skeleton is (1) less well configured, or

(2) better configured to generate and withstand high magnitude unilateral bite forces. Our

analysis builds on previous research into human craniofacial function (e.g., Lieberman,

2008; Wroe et al., 2010; Szwedowski, Fialkov & Whyne, 2011; Maloul et al., 2012) by

examining masticatory biomechanics within the context of the constrained lever model

(Greaves, 1978; Spencer & Demes, 1993; Spencer, 1998; Spencer, 1999), which predicts that

bite force production in mammals is constrained by the risk of generating distractive

(tensile) forces at the working (biting) side temporomandibular joint (TMJ). Under this

model, during unilateral biting, reaction forces are produced at the bite point and the

working and balancing (non-biting) side TMJs. These three points form a “triangle of

support,” and the line of action of the resultant vector of the jaw elevator muscle forces

must intersect this triangle in order to produce a “stable” bite in which compressive

reaction forces are generated at all three points (Fig. 1A). The resultant vector lies in the

midsagittal plane when the muscles are recruited with bilateral symmetry and will pass

through the triangle of support during bites on the incisors, canines, and premolars.

However, molar biting changes the shape of the triangle such that a midline muscle result

may lie outside of the triangle of support. If this occurs, a distractive (tensile) force is

generated in the working side TMJ that “pulls” the mandibular condyle from the articular

eminence (Fig. 1B). In the case of the mammalian jaw, the soft tissues of the TMJ are well

suited to resist compressive joint reaction forces in which the mandibular condyle is being

“driven” into the cranium, but they are poorly configured to resist distractive joint forces

in which the condyle is being “pulled away” from the cranium (Greaves, 1978). Mammals,

including humans (Spencer, 1998), avoid this by reducing the activity of the chewing

muscles on the balancing side during bites on the posterior teeth. This draws the muscle

resultant vector toward the working side and back within the triangle, but the total muscle

force available for biting is reduced, thereby reducing peak bite force magnitudes. Thus,

although one might expect that a bite on a distal tooth would produce an elevated bite

force due to a short load arm (per a given muscle force), this effect is mitigated by the

constraint that the muscle force vector must lie within the triangle of support. A finding

that constraints on bite force production were especially strong in humans would be

consistent with the hypothesis that the human cranium is poorly configured to generate

high unilateral bite forces, and inconsistent with the opposing hypothesis.

We further build on previous work by considering intraspecific variation in our analysis

of human feeding biomechanics. Our prior work has shown that high degrees of

intraspecific variation in cranial shape need not necessarily produce a high degree of

intraspecific mechanical variation (Smith et al., 2015b), implying that mechanical patterns

are conservative and reflect an underlying common geometry that may be overlain by

skeletal traits that can vary without dramatically altering the fundamental mechanical

framework of the cranium. A caveat, however, is that Smith et al. (2015b) examined only
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one species, P. troglodytes. Thus, it has yet to be established if this pattern is generalizable

across primates (or other vertebrates). Accordingly, we examined mechanical variation

among a sample of geographically diverse human crania found to differ notably in shape.

MATERIALS AND METHODS
Analysis of human cranial shape variation and selection
of specimens for FEA
We analyzed FEMs of six crania lying at the extremes of human variation, as well as one

“average” specimen found to conform closely to an average shape. To select specimens, we

analyzed shape variation within a sample of modern human (H. sapiens) crania using

previously collected geometric morphometric (GM) data (Baab, 2007; Baab et al., 2010).

We analyzed 85 landmarks collected from a sample of 88 Holocene human crania housed

at the American Museum of Natural History (AMNH) (Tables 1 and 2). These included

mainly facial landmarks combined with a few that characterize neurocranial shape,

corresponding to our focus on facial biomechanics in this study. This sample includes

individuals from diverse regions across the globe, and provides a cross-section of

populations that differ in cranial robusticity (Baab et al., 2010). Landmark data from these

88 specimens were converted to shape coordinates by Generalized Procrustes analysis

(e.g., Bookstein, 1991; Slice, 2005) and analyzed using principal components analysis

(PCA). We found that the first three principal components (PCs) described 39% of the

shape variation in our sample (Fig. 2). In order to maximize shape-related biomechanical

variation in our FEMs, we considered variation from all 88 PCs when selecting

specimens to be modeled. We first determined those individuals exhibiting the largest

distances from the group centroid (i.e., consensus shape), calculated as Euclidean distance

A
b

b

ws wsbs bs

v v

B

Figure 1 The constrained lever model of jaw biomechanics. During biting, the bite point (b) and the
temporomandibular joints on the working side (ws) and balancing side (bs) form a “triangle of support”
that changes shape when biting on different teeth. During a premolar bite (A) the resultant vector of the
jaw adductor muscles (v) passes through the triangle, producing compression (green circles) at all three
points. However, during some molar bites (B) the vector falls outside the triangle when the muscles are
being recruited equally on both sides of the head, producing compression at the bite point and bs joint,
but distraction (red circle) at the ws joint. The recruitment of the balancing side muscles must be
lessened in order to eliminate this distraction, thereby causing the vector to shift its position towards the
working side and back into the triangle (yellow arrow).
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Table 1 Landmarks used in the geometric morphometric analysis of human craniofacial shape.
Coordinate data on these landmarks were collected by Baab (2007) and Baab et al. (2010). The land-
marks chosen for the analysis performed here are a subset of those used by Baab et al. (2010), consisting
mainly of facial landmarks. Landmark numbers and descriptions correspond to those in Baab (2007).

Landmark Number1

Alare (R, L) 13, 40

Alveolare 11

Anterior nasal spine 10

Anterior pterion (R, L) 24, 51

Basion 67

Bregma 5

Canine-P3 contact (R, L) 116, 125

Center of mandibular fossa (R, L) 97, 103

Dacryon (R, L) 16, 43

Distal M3 (R, L) 121, 130

Frontomalare orbitale (R, L) 20, 47

Frontomalare temporale (R, L) 19, 46

Frontosphenomalare (R, L) 23, 50

Frontotemporale (R, L) 35, 62

Glabella 7

Hormion 68

Incision 71

Inferior entoglenoid (R, L) 95, 101

Inferior zygotemporal suture (R, L) 72, 78

Infraorbital foramen (R, L) 12, 39

Inion 1

Jugale (R, L) 26, 53

Lambda 3

Lateral articular fossa (R, L) 96, 102

Lateral prosthion (R, L) 114, 123

Lingual canine margin (R, L) 124, 115

M1-M2 contact (R, L) 119, 128

M2-M3 contact (R, L) 120, 129

Malar root origin (R, L) 31, 58

Mid post-toral sulcus 6

Midline anterior palatine 70

Mid-torus inferior (R, L) 21, 48

Mid-torus superior (R, L) 22, 49

Nasion 8

Opisthion 66

Orbitale (R, L) 18, 45

P3-P4 contact (R, L) 117, 126

P4-M1 contact (R, L) 118, 127

Porion (R, L) 27, 54

Postglenoid (R, L) 94, 100
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using all 88 PCs (Table 3). From among these individuals, we chose the six specimens that

exhibited the largest pairwise distances, excluding insufficiently preserved crania, those

missing many teeth, and those unavailable for loan (Table 4). These six “extreme” modern

human crania included: one male and one female Khoe-San from South Africa

(AMNH VL/2463 and AMNH VL/2470, hereafter referred to as “KSAN1” and “KSAN2”);

a male from Greifenberg, Austria (AMNH VL/3878, “BERG”); a female from the

Malay Archipelago (AMNH 99/7889, “MALP”); a male from the Tigara culture at Point

Hope, Alaska (AMNH 99.1/511, “TIGA”); and a male from Ashanti, West Africa (AMNH

VL/1602, “WAFR”). An additional specimen, a Native American male from Grand

Gulch, Utah (AMNH 99/7365, “GRGL”), was chosen as an “average” representative of

Table 1 (continued).

Landmark Number1

Rhinion 9

Root of zygomatic process (R, L) 32, 59

Spheno-palatine suture (R, L) 108, 112

Staphylion 69

Stephanion (R, L) 34, 61

Superior zygotemporal suture (R, L) 25, 52

Supraorbital notch (R, L) 17, 44

Temporo-sphenoid suture (R, L) 109, 113

Zygomaxillare (R, L) 14, 41

Zygoorbitale (R, L) 15, 42

Note:
1 Landmark numbers correspond to those in Baab (2007).

Table 2 Geographic distribution of human specimens included in the analysis of craniofacial shape
variation. All specimens are housed at the AMNH.

Region/Population N

Aboriginal Australian 9

Khoe-San, South Africa 3

China 6

East Africa 7

Grand Gulch, Utah 10

Greifenberg, Carinthia, Austria 6

Heidenheim, Germany 1

Kakoletri, Peloponnesus, Greece 1

Maori, Waitakeri, New Zealand 4

Mongolia 1

Point Hope, Alaska 12

Southeast Asia 12

Tarnapol, Galicia, Poland 2

Tasmanian 4

Tierra del Fuego, Argentina 3

West Africa 7
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Figure 2 Principal components analysis (PCA) of human craniofacial shape variation. Panels show (A) PC1 by PC2, (B) PC1 by PC3, and
(C) wireframes illustrating craniofacial shape change associated with the first three principal components in right lateral, superior, and frontal views.
The left and right columns of wireframes represent the negative and positive ends of each component, respectively, scaled to their respective axes. The
10 unique landmarks with the highest loadings for each component are highlighted using a red ellipse on the midline and right side. A single ellipse was
used to circle multiple landmarks if they were located close together. Shape differences toward the positive end of PC 1 include: a vertically shorter face
with a more projecting brow ridge, a longer andmore projecting palate, a more vertical frontal bone that is narrower at pterion, a vault that is expanded
posteriorly, and a lower temporal line at stephanion. Shape differences toward the positive end of PC 2 include: a longer cranium with a wider frontal
bone, a vault that is angled more postero-inferiorly, wider orbits and a superiorly shifted nasal aperture, and an antero-posteriorly shorter temporal
bone. Shape differences toward the positive end of PC 3 include: higher temporal lines at stephanion, a shorter and more orthognathic subnasal region
with a less projecting palate, a more inferiorly positioned TMJ, and a more inferiorly positioned midline cranial base.
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Table 3 Human crania sorted by their Euclidean distance from the group centroid. The first 25
specimens represent the most distant from the group centroid, whereas the bottom row represents an
“average” representative of human cranial shape based on its close proximity to the centroid. Values in
parentheses represent the distances expressed in units of the mean pairwise distance (0.068), which
provides information on how much farther a particular cranium is from the centroid than the mean
distance. Specimens are coded here following AMNH catalog numbers.

Specimen Region/Population Distance from centroid

VL/24631 Khoe-San, South Africa 0.1011 (1.49)

VL/38781 Greifenberg, Austria 0.0939 (1.38)

99/78891 Malay Archipelago, SE Asia 0.0918 (1.35)

VL/3818 Greifenberg, Austria 0.0885 (1.31)

VL/269 Tasmanian 0.0881 (1.30)

VL/229 Kalmuk, Western Mongolia 0.0876 (1.29)

VL/408 Mhehe, East Africa 0.0871 (1.28)

99.1/5111 Point Hope, Alaska 0.0871 (1.28)

99/8155 Aboriginal Australian 0.0842 (1.24)

99/6562 Māori, New Zealand 0.0830 (1.22)

VL/271 Tasmanian 0.0824 (1.22)

VL/24701 Khoe-San, South Africa 0.0788 (1.16)

VL/1902 Māori, New Zealand 0.0777 (1.15)

99.1/490 Point Hope, Alaska 0.0770 (1.14)

99/8165 Aboriginal Australian 0.0767 (1.13)

VL/272 Tasmanian 0.0750 (1.11)

VL3619 Greifenberg, Austria 0.0745 (1.10)

99/7333 Grand Gulch, Utah 0.0741 (1.09)

99/8177 Aboriginal Australian 0.0740 (1.09)

VL/2267 Kakoletri, Greece 0.0733 (1.08)

VL/1729 Tientsin, China 0.0728 (1.07)

VL/16021 Ashanti, West Africa 0.0727 (1.07)

VL/274 Tasmanian 0.0721 (1.06)

VL/2389 Ashanti, West Africa 0.0721 (1.06)

99/8171 Aboriginal Australian 0.0720 (1.06)

99/73651 Grand Gulch, Utah 0.0496 (0.73)

Note:
1 Specimens selected to be modeled using FEA.

Table 4 Pairwise distances between the six human cranial specimens selected for use in FEA. Values
in parentheses represent the distances expressed in units of the mean pairwise distance (0.068).
Specimens are coded here following AMNH catalog numbers.

VL/2463 VL/3878 99/7889 99.1/511 VL/2470 VL/1602

VL/2463 0.1634 (1.70)1 0.0938 (0.97) 0.1534 (1.59)1 0.1083 (1.12) 0.1145 (1.19)

VL/3878 0.1469 (1.52) 0.1304 (1.35) 0.1230 (1.28) 0.1385 (1.44)

99/7889 0.1526 (1.58)1 0.1178 (1.22) 0.1029 (1.09)

99.1/511 0.1330 (1.38) 0.1256 (1.30)

VL/2470 0.1049 (1.09)

VL/1602

Note:
1 These represent the greatest pairwise distances in the final sample.
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human cranial shape based on its close proximity (i.e., small Euclidean distance) to the

group centroid and its availability for loan (see Table 3). Note that this individual was

incorrectly transcribed as AMNH 99/7333 by Ledogar (2015).

Creation of FEMs from “extreme” and “average” human specimens
Construction of solid models
The seven specimens chosen for analysis were CT-scanned at Penn State’s Center for

Quantitative Imaging (pixel size = 0.16 mm) and the 2D digital image stacks were used to

create seven solid meshes (Fig. 3) using Mimics v 14.0 (Materialise, Ann Arbor, MI, USA),

A

B                                           C                

D                                           E

F                                            G

Figure 3 Human models analyzed in the current study.Models include one “average” cranium, GRGL
(A) and six “extreme” specimens that differ notably in shape, BERG (B) KSAN1 (C) KSAN2 (D) MALP
(E) TIGA (F) and WAFR (G).
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following the methods outlined by Smith et al. (2015a) and Smith et al. (2015b).

Mandibles corresponding to the seven crania (except for BERG and KSAN2, which

lacked mandibles; see below) were also scanned so that they could be used to direct

muscle force vectors in the loading simulations described below. The crania were solid-

meshed at similar densities using tet4 elements (element count: GRGL = 2,118,350;

BERG = 1,928,931; KSAN1 = 1,620,112; KSAN2 = 1,392,417; MALP = 1,323,093;

TIGA = 2,059,433; WAFR = 1,831,053). Solid meshes were then imported as Nastran

(NAS) files into Strand7 (Strand7 Pty Ltd, NSW, Sydney, Australia) FEA software.

We created two sets of human FEMs that differed in their assigned muscle force and

bone properties. One set of human FEMs (“ALL-HUM” models) was assigned human

properties for bone tissue and masticatory muscle force, whereas chimpanzee properties

were applied to the second set (“CHIMPED” models). The ALL-HUM models provide

the most realistic assessment of human cranial mechanics, in terms of the predicted

strains and bite forces. These models also allow for a more thorough examination of

intraspecific variation in humans. In contrast, the CHIMPED models permit direct

comparisons between our humans FEMs and our previously analyzed FEMs of

chimpanzees and fossil hominins (Smith et al., 2015a; Smith et al., 2015b). These

comparisons focus on shape-related differences in mechanical performance that are free of

the effects of differences in cranial size and bone material properties. Therefore, the

comparisons between the CHIMPED human models and the chimpanzee data from

Smith et al. (2015a) and Smith et al. (2015b) most directly address our mechanical

hypothesis described above because the hypotheses relate specifically to the mechanical

consequences of shape differences.

Material properties of tissues
Human cortical bone material properties assigned to the ALL-HUM models were

collected from various locations across the craniofacial skeletons of two fresh-frozen

human cadavers (female, aged 22; male, aged 42) by measuring their resistance to

ultrasonic wave propagation (Ashman et al., 1984; Peterson & Dechow, 2002;

Schwartz-Dabney & Dechow, 2002; Wang & Dechow, 2006; Wang, Strait & Dechow, 2006;

see Supplemental Information). Previous studies show that freezing has only a very

minimal effect on ultrasonic measurements and elasticity of cortical bone (Zioupos,

Smith & Yuehuei, 2000). For each location sampled, the elastic (Young’s) modulus in the

axis of maximum stiffness (E3) was averaged between the human donors and used to

distribute spatially heterogeneous isotropic material properties throughout the seven

human FEMs using a method (Davis et al., 2011) analogous to the diffusion of heat

through a highly conductive material. To achieve this, values at each of the sampled

locations, which ranged from 17.92–25.52 GPa (mean = 20.61 GPa, SD = 1.92), were

converted to temperatures and distributed throughout the cortical volume of the FEM.

The elastic modulus of cortical bone was then set to vary with temperature during the

subsequent loading analysis, with any thermally-induced strains removed from the

analysis. For Poisson’s ratios, models were each assigned the average of the sampled

locations (v23 = 0.293). The same procedure was used to diffuse chimpanzee material
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properties to the CHIMPED model variants using data collected from a cadaveric female

chimpanzee at 14 craniofacial regions (Smith et al., 2015a; Smith et al., 2015b). In both the

ALL-HUM and CHIMPED sets of model variants, homogeneous isotropic properties

were used to model both trabecular bone (E3 = 637 MPa; v23 = 0.28) and enamel

(E3 = 80,000 MPa; v23 = 0.28), following Smith et al. (2015a) and Smith et al. (2015b).

Muscle forces and constraints
Jaw adductor muscle forces were applied to both sets of FEMs for the anterior temporalis,

superficial masseter, deep masseter, and medial pterygoid under the assumption that the

chewing muscles were acting at peak activity levels on both sides of the cranium. These

loads allow an estimate of the maximum bite force produced by each individual. In the

ALL-HUM variants, muscle forces were applied based on muscle physiological cross-

sectional area (PCSA) data reported by van Eijden, Korfage & Brugman (1997), with forces

corrected to account for pennation and differences in gape during fixation using formulae

from Taylor & Vinyard (2013). Corrected PCSAs were then used to calculate forces in

Newtons (N) such that each cm2 of muscle was equivalent to 30 N (Murphy, 1998). These

unscaled forces were applied to the “average” specimen (GRGL), while the six “extreme”

variants were applied forces that were either scaled up or down based on differences in

model size (Table 5), with size represented by model volume (i.e., the summed volume of

all tet4 elements in mm3) to the two-thirds power. This muscle force scaling procedure

removes the effects of differences in model size on stress, strain, and strain energy density

(SED) from the mechanical results (Dumont, Grosse & Slater, 2009; Strait et al., 2010).

The CHIMPED model variants were also assigned forces that were scaled dependent on

their size using PCSA data from an adult female chimpanzee (Strait et al., 2009;

Smith et al., 2015a; Smith et al., 2015b). However, rather than scaling the FEMs around the

“average” specimen (GRGL), we scaled the forces applied to the CHIMPED models (see

Table 5) from the baseline chimpanzee model used for scaling purposes (PC1+) in the

analysis by Smith et al. (2015b), permitting size-free comparisons between humans and

chimps. For both sets of muscle loadings, plate elements modeled as 3D membrane were

“zipped” at their nodes to the surface faces of tet4 elements representing each muscle’s

origin. The scaled muscle forces for each set of analyses were applied using Boneload

(Grosse et al., 2007) to the normal surfaces of the plate elements as tractions directed

toward their respective insertions on the mandible, with the mandible slightly depressed

and the condyles translated onto the articular eminences (Dumont et al., 2010). Mandibles

were only used here to direct these vectors. In the case of the BERG specimen, which was

lacking its mandible, a scaled version of the GRGL mandible was used to define the

orientation of muscle force vectors. Similarly, a scaled version of the KSAN1mandible was

used to replace the missing mandible in KSAN2.

For both sets of biting simulations, each of the seven FEMs was oriented such that one

of three axes (i.e., X, Y, or Z) was parallel to the occlusal plane. Each model was

constrained at a single node against translation in all axes at the working-side TMJ, while

the balancing-side TMJ was constrained only in the superoinferior and anteroposterior

directions (Strait et al., 2009; Smith et al., 2015a; Smith et al., 2015b), thus creating an axis
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of rotation around the TMJs. Models were subjected to simulations of left premolar (P3)

and left molar (M2) biting by constraining a node in the center of occlusal surface in each

tooth, respectively, in the superoinferior direction. These constraints generated strains in

the craniofacial skeleton, as well as reaction forces at the TMJs and bite point, upon the

application of muscle forces.

Analysis of model output parameters
Following Smith et al. (2015a) and Smith et al. (2015b), we displayed global strain patterns

using strain maps. These maps are analogous to histograms in that they illustrate strain

magnitudes at thousands of nodes simultaneously, but have the added advantage of

preserving spatial information. In addition, we collected strain data generated by each

FEM from surface elements at 14 locations across the craniofacial skeleton (Fig. 4). These

locations correspond to those included in previous in vitro and in silico (e.g., FEA) studies

on primate feeding biomechanics (e.g., Hylander, Johnson & Picq, 1991; Hylander &

Johnson, 1997; Ross et al., 2011; Smith et al., 2015a; Smith et al., 2015b). At each location,

we examined several strain metrics from each of the seven FEMs in order to understand

patterns of deformation. These included maximum principal strain (tension), minimum

principal strain (compression), maximum shear strain (maximum principal strain–

minimum principal strain), von Mises strain (distortional strain or non-isometric strain),

and strain energy density (SED, the strain energy stored at a given point). Additionally,

strain mode, the absolute value of maximum principal strain divided by minimum

principal strain, was recorded for each location. This measure indicates whether tension

or compression is dominant at a given location.

Table 5 Muscle force scaling for the ALL-HUM and CHIMPED models of modern human crania.
Muscle forces in Newtons (N) were scaled by model size, where size is represented by model volume
in mm3. Models are shown here ordered from smallest to largest in size.

Variant Model Volume (mm3) Volume2/3

Muscle force (N)

AT SM DM MP

ALL-HUM KSAN2 331,466 4,789.53 128.41 105.15 53.29 108.64

MALP 364,129 5,099.22 136.72 111.95 56.73 115.67

KSAN1 433,331 5,726.38 153.53 125.72 63.71 129.89

WAFR 475,555 6,092.57 163.35 133.75 67.79 138.20

BERG 489,588 6,211.84 166.55 136.37 69.11 140.90

GRGL 557,223 6,771.52 181.55 148.66 75.34 153.60

TIGA 655,320 7,544.59 202.28 165.63 83.94 171.14

CHIMPED KSAN2 331,466 4,789.53 556.13 572.02 85.07 189.02

MALP 364,129 5,099.22 592.09 609.00 90.57 201.24

KSAN1 433,331 5,726.38 664.91 683.90 101.71 225.99

WAFR 475,555 6,092.57 707.43 727.64 108.22 240.44

BERG 489,588 6,211.84 721.28 741.88 110.34 245.15

GRGL 557,223 6,771.52 786.26 808.73 120.28 267.24

TIGA 655,320 7,544.59 876.02 901.05 134.01 297.74

Note:
AT, anterior temporalis; SM, superficial masseter; DM, deep masseter; MP, medial pterygoid.
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Data on the reaction forces generated at constrained nodes (i.e., the bite point and two

TMJs) were recorded in Newtons (N). Reaction forces at the P3 and M2 were recorded

relative to the occlusal plane, while reaction forces at the left and right TMJs were recorded

and compared relative to a user-defined “triangle of support” Cartesian coordinate

system, with one of three axes perpendicular to a reference plane defined by the “triangle

of support” formed by the constrained nodes at the bite point and two articular eminences

(Smith et al., 2015a; Smith et al., 2015b). The efficiency of bite force production at a given

bite point in each model was also compared using the mechanical advantage (MA), a

measure of masticatory muscle efficiency or leverage, calculated as the ratio of bite force

output to muscle force input.

In the evaluation of our mechanical hypothesis, we first inspected data collected from

the ALL-HUM models for large levels of intraspecific variation that could potentially

invalidate the functional significance of our results. Strain magnitudes and SED at each

of the 14 sampled locations were examined for large differences between individuals,

in addition to a comparison of coefficients of variation (CVs) at specific locations.

Differences in the spatial patterning of strain magnitudes between the ALL-HUM models

were also compared using strain maps, in addition to variation in biting efficiency

(i.e., MA). Lastly, we also calculated CVs for von Mises strain and MA in the CHIMPED

model variants for direct comparison with the chimpanzee CVs reported by Smith

et al. (2015b) using the Fligner-Killeen test for equal CVs.

9
10

1 Dorsal Interorbital
2 Working Dorsal Orbital
3 Balancing Dorsal Orbital
4 Working Postorbital Bar
5 Balancing Postorbital Bar
6 Working Zygoma!c Arch
7 Balancing Zygoma!c Arch
8 Working Zygoma!c Root
9 Balancing Zygoma!c Root
10 Working Infraorbital
11 Balancing Infraorbital
12 Working Nasal Margin
13 Working Zygoma!c Body
14 Balancing Zygoma!c Body

23

1

5 4

1314
11

12
8

67

Figure 4 Key to locations where strains were sampled in FEMs. Strain data were collected
from ALL-HUM and CHIMPED variants of human FEMs from 14 craniofacial sites, following
Smith et al. (2015a) and Smith et al. (2015b).
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To analyze relative mechanical performance in our human FEMs, we focused on

comparisons between the CHIMPED humans and our previously analyzed FEMs of

chimpanzee crania (Smith et al., 2015b). Specifically, we compared the magnitudes

of von Mises strain, considered to be a key metric in assessing regional bone strength

(Keyak & Rossi, 2000), at the 14 sampled locations, as well as differences in biting

efficiency, between humans and chimps. We tested for significant differences between

species using the Mann-Whitney U test.

In vitro validation of specimen-specific human cranial FEM
Data on in vitro bone strain collected during simulated P3 biting in a cadaveric human

head were used to validate our results. As noted above, two human heads were used to

gather data on the properties of craniofacial cortical bone. Before the removal of bone

samples, the male specimen was CT-scanned, and strain data from 14 craniofacial

locations were collected during a series of in vitro loading analyses (see Supplemental

Information). Digital images of the specimen were then used to construct an eighth FEM,

the in vitro loadings were replicated using FEA, and strain data were collected from the

FEM at locations corresponding to the 14 gage sites. The in vitro and in silico strain data

were then compared in order to establish the degree to which assumptions regarding

geometry and material properties introduce error into an FEM, where error is represented

by the differences between the in vitro (observed) and in silico (expected) results, divided

by the expected results. These data were also analyzed using ordinary least squares (OLS)

regression. Lastly, the orientations for both maximum and minimum principal strain

in FEM were visually compared to those recorded during the in vitro loadings.

RESULTS
In vitro validation of specimen-specific human cranial FEM
Strain magnitudes recorded during in vitro P3 loadings of the human cadaveric specimen

and the results of the specimen-specific FEA are listed in Table 6. Comparisons of these

data reveal that the specimen-specific FEM generated strains very similar in magnitude to

those generated during the in vitro loadings. Results of the regression analysis on log-

transformed strain data confirm a close correspondence between in vitro and in silico

results, with significant regressions of 0.845x + 0.194 (r2 = 0.909, p < 0.001) and

0.849x + 0.186 (r2 = 0.953, p < 0.001) for maximum principal strain andminimum principal

strain, respectively. However, assumptions regarding geometry and material properties

did introduce error into the FEM (see Table 6). Visual inspection of principal strain

orientations in the specimen-specific FEA reveals that orientations for both maximum

principal strain and minimum principal strain at the 14 sampled locations were also very

similar to those recorded from the 14 gage locations during the in vitro analysis (Figs. S3–S7).

Shape-related variation in human feeding biomechanics
Variation in strain magnitude and spatial patterning
Box-plots of strain and SED distributions recorded from the ALL-HUM models at the 14

sampled locations during premolar (P3) and molar (M2) biting are shown in Fig. 5

Ledogar et al. (2016), PeerJ, DOI 10.7717/peerj.2242 15/47

http://dx.doi.org/10.7717/peerj.2242/supplemental-information
http://dx.doi.org/10.7717/peerj.2242/supplemental-information
http://dx.doi.org/10.7717/peerj.2242/supp-8
http://dx.doi.org/10.7717/peerj.2242/supp-12
http://dx.doi.org/10.7717/peerj.2242
https://peerj.com/


Table 6 Results of in vitro validation analysis. Average values and standard deviations for maximum
(MaxPrin) and minimum (MinPrin) principal strain magnitudes recorded during three in vitro loading
trials on the left P3 biting, the results of a specimen-specific in silico (FEA) loading analysis, and an
estimate of the error in the FEA, where “error” is represented by the difference between in vitro
(observed) and in silico (expected) results, divided by the expected results. See Figs. S3–S7 for site
locations. Units are in microstrain (mɛ).

Site Exp. MaxPrin MinPrin

1 In vitro 15.00 (4.36) -10.33 (2.08)

In silico 14 -15
Error 6.67% 45.16%

2 In vitro 13.00 (1.00) -11.67 (0.58)

In silico 10 -10
Error 23.08% 14.29%

3 In vitro 3.33 (0.58) -5.00 (1.00)

In silico 6 -7
Error 80.00% 40.00%

4 In vitro 30.67 (1.15) -36.00 (0.00)

In silico 29 -34
Error 5.43% 5.56%

5 In vitro 15.00 (2.00) -14.67 (1.53)

In silico 19 -12
Error 26.67% 18.18%

6 In vitro 11.67 (0.58) -7.33 (0.58)

In silico 11 -10
Error 5.71% 36.36%

7 In vitro 42.33 (1.53) -23.33 (2.25)

In silico 42 -17
Error 0.79% 27.14%

8 In vitro 42.33 (2.08) -109.67 (3.06)

In silico 37 -105
Error 12.60% 4.26%

9 In vitro 7.67 (0.58) -2.67 (2.08)

In silico 8 -4
Error 4.35% 50.00%

10 In vitro 45.33 (2.08) -22.33 (1.15)

In silico 23 -20
Error 49.26% 10.45%

11 In vitro 23.67 (0.58) -10.67 (3.06)

In silico 22 -13
Error 7.04% 21.88%

12 In vitro 108.00 (2.65) -281.67 (8.33)

In silico 115 -238
Error 6.48% 15.50%

13 In vitro 38.67 (1.15) -22.00 (1.00)

In silico 39 -17
Error 0.86% 22.73%
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(see also Tables S1 and S2). Despite notable differences in craniofacial morphology

between the models, comparisons of strain magnitudes reveal strong similarities. For P3

biting, the highest strain magnitudes were experienced at the working nasal margin

(Location 12), although on average higher tensile strain magnitudes were generated at the

working and balancing postorbital bars (Locations 4 and 5). During M2 biting, the

working zygomatic root (Location 8) was subjected to the highest strain magnitudes,

except that tension was greatest at the balancing postorbital bar. During both bites, low

strain magnitudes were generated along the supraorbital torus (Locations 1–3), the

balancing zygomatic root (Location 9), balancing infraorbital (Location 11), and the

zygomatic bodies (Locations 13 and 14). All FEMs of human crania were found to exhibit

this general pattern.

Some regions of the face did exhibit large differences among individuals. In particular,

the FEMs were found to differ in von Mises strain magnitude by as much as 210% at the

nasal margin, which also has the highest CVs for all forms of strain during both P3 and M2

biting (Table 7), with the exception of minimum principal strain at the working dorsal

orbital (Location 2) and balancing infraorbital (Location 11) during P3 biting, SED at the

working dorsal orbital (Location 2) during P3 biting, and the balancing zygomatic body

(Location 14) for both bites.

Strain mode was nearly always compressive or tensile at a given location across the

seven ALL-HUM models (Fig. 6), with a few exceptions. During premolar biting, only 3

locations varied with respect to strain mode (Locations 1, 10, 11), with only one FEM

differing from the other models in each case. These three locations also differed in strain

mode during molar biting, with Locations 1 and 10 exhibiting slightly higher levels of

variation, in addition to variation in strain mode at Location 4.

By comparison with CHIMPED FEMs, humans were found to exhibit lower levels of

shape-related variation in vonMises strain magnitude and lower CVs than chimpanzees at

the 14 sampled locations (Table 8). However, results of the Fligner-Killeen tests reveal that

only 3 of the 14 “gage sites” exhibit significant differences in CV values. Specifically,

humans were found to exhibit a significantly lower CV at the zygomatic arches during

both P3 and M2 biting, and at the working infraorbital during P3 biting.

Variation in the spatial patterning of strain concentrations
Despite some large differences in strain magnitude, the spatial patterning of strain

distributions was similar across the ALL-HUM models. The color maps during P3 biting

(Fig. 7) reveal two predominant deformation regimes that are common across the seven

FEMs: (1) superior displacement of the anterior maxilla in proximity to the loaded P3,

which creates highly tensile and compressive (hence highly shearing) strains surrounding

Table 6 (continued).

Site Exp. MaxPrin MinPrin

14 In vitro 27.67 (2.08) -42.33 (3.01)

In silico 38 -25
Error 37.35% 40.94%
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Figure 5 Strain and SED generated by the ALL-HUM models. Box-and-whisker plots show the
minimum, first quartile, median, third quartile, and maximum for strain and SED magnitudes (y-axis)
generated by the ALL-HUM models at the 14 sampled locations (x-axis) during premolar (P3) and
molar (M2) biting. Site numbers follow Fig. 4.
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the root of the nasal margin, compression along the nasal margin, and compression at the

working zygomatic root; and (2) frontal bending of the zygomae under the inferiorly

directed pulling action of the masticatory muscles, which generates tension at the

zygomatic body and near the zygomaticomaxillary junction, particularly at the working-

side, and deforms the orbit such that it is tensed along an inferolaterally-oriented axis and

compressed along a superolaterally-oriented axis.

The color maps of strain patterning during M2 biting were also generally similar across

the ALL-HUMmodels (Fig. 8). As expected, all models exhibited lower strain magnitudes

in the lower maxillary region during molar biting compared to premolar biting, but

higher concentrations of compressive strain at the working zygomatic root. Molar biting

was also associated with the same type of frontal bending, zygomatic torsion, and orbital

Table 7 Variation in strain and SED in the ALL-HUM models. Coefficients of variation for max-
imum principal strain (MaxPrin), minimum principal strain (MinPrin), shear strain (Shear), von
Mises strain, and SED at the 14 locations examined during premolar (P3) and molar (M2) biting in the
ALL-HUM models of modern human crania. Site numbers follow Fig. 4.

Site Bite MaxPrin MinPrin Shear von Mises SED

1 P3 56.01 34.39 28.49 27.88 59.08

M2 43.20 28.62 20.78 22.82 50.07

2 P3 28.35 41.61 30.51 29.27 78.82

M2 27.61 44.20 29.50 29.04 60.38

3 P3 23.83 26.53 22.94 22.97 52.39

M2 25.16 24.29 24.66 24.16 49.48

4 P3 15.30 21.39 14.75 14.28 27.78

M2 34.43 22.83 22.73 21.46 36.89

5 P3 14.32 13.06 12.77 13.24 26.98

M2 12.50 14.22 11.70 12.06 24.53

6 P3 21.74 12.21 11.77 11.89 23.52

M2 17.43 13.56 11.13 12.05 25.11

7 P3 12.53 8.26 8.09 7.93 15.97

M2 11.27 6.05 5.78 5.32 11.98

8 P3 19.73 2.58 13.87 12.50 25.96

M2 20.48 12.04 12.62 11.88 23.36

9 P3 20.78 21.84 18.18 19.30 39.77

M2 12.59 9.28 8.23 8.66 19.36

10 P3 11.70 33.05 12.32 11.72 21.21

M2 35.51 22.16 25.60 25.86 50.44

11 P3 24.44 37.84 24.15 21.83 36.54

M2 25.53 43.20 28.88 26.73 52.39

12 P3 51.04 35.54 39.39 37.44 64.43

M2 52.66 34.33 41.78 40.46 76.44

13 P3 28.41 34.42 26.48 25.60 51.87

M2 14.11 20.80 14.37 13.50 28.05

14 P3 35.54 22.56 31.16 31.33 68.31

M2 39.93 26.73 35.19 35.33 80.97
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deformation that was observed for premolar biting, with relatively large concentrations of

strain at the postorbital bars, orbital margins, and medial infraorbital.

In their study of chimpanzee biomechanical variation, Smith et al. (2015b) compared

color maps of principal strain magnitudes in their six models with the scales normalized to

an average of 10 landmarks (Locations 1–5, 8–12). They suggest that, by illuminating

similarities and differences between individuals in the concentrations of relatively high

and low strain concentrations through this normalization step, such “relative strain”

maps strain may be particularly informative in comparative analyses of craniofacial

function. When viewed in this manner (Fig. 9), the CHIMPED human models more

clearly reveal a shared pattern of facial deformation that differs from that of chimpanzees

under identical loading conditions, which was predominantly characterized by torsion

of the zygoma and resulting orbital deformation under the inferiorly-directed masseteric

muscle force.
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Figure 6 Strain mode in the ALL-HUMmodels. Distribution of strain mode (log of ratio of maximum
to minimum principal strain, y-axis) plotted by location (x-axis) in the ALL-HUM models. Plots show
(A) premolar (P3) and (B) molar (M2) biting. Logging the data listed in Tables S2 and S3 centers strain
mode data around zero. Values above zero indicate mainly tension, while values below zero indicate
mainly compression. Site numbers follow Fig. 4.
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Table 8 Variation in von Mises strain magnitudes: Human vs. Chimpanzee. Comparisons of the
coefficients of variation (CVs) for von Mises strain recorded in the CHIMPED human models and the
chimpanzee results from Smith et al. (2015b) at each of the 14 craniofacial sites examined. Results of
Fligner-Killeen tests for equal CVs between the species are also presented (a = 0.05). Comparisons that
yielded significant results are marked by asterisks.

Site P3 M2

1 CV–Human 29.04 22.68

CV–Chimp 25.91 23.63

p (same CV) 0.065 0.141

2 CV–Humans 24.34 23.05

CV–Chimps 46.61 47.07

p (same CV) 0.122 0.050

3 CV–Humans 19.71 17.75

CV–Chimps 19.81 20.10

p (same CV) 0.386 0.369

4 CV–Humans 13.51 21.12

CV–Chimps 29.98 33.20

p (same CV) 0.176 0.359

5 CV–Humans 12.89 11.50

CV–Chimps 27.56 29.40

p (same CV) 0.156 0.060

6 CV–Humans 18.15 16.51

CV–Chimps 64.99 66.99

p (same CV) 0.022* 0.022*

7 CV–Humans 11.96 12.07

CV–Chimps 55.83 56.63

p (same CV) 0.022* 0.022*

8 CV–Humans 10.14 12.27

CV–Chimps 16.54 25.58

p (same CV) 0.143 0.130

9 CV–Humans 14.12 8.03

CV–Chimps 25.7 23.58

p (same CV) 0.069 0.052

10 CV–Humans 8.8 15.46

CV–Chimps 17.36 15.30

p (same CV) 0.039* 0.290

11 CV–Humans 10.6 14.34

CV–Chimps 27.76 28.11

p (same CV) 0.056 0.100

12 CV–Humans 38.05 38.76

CV–Chimps 28.23 43.35

p (same CV) 0.147 0.396

13 CV–Humans 24.54 10.39

CV–Chimps 17.95 17.52

p (same CV) 0.157 0.207

(Continued)
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Table 8 (continued).

Site P3 M2

14 CV–Humans 22.78 23.11

CV–Chimps 51.99 55.84

p (same CV) 0.222 0.166

MaxPrin          MinPrin          Shear         von Mises           SED

GRGL
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KSAN2

MALP

TIGA
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Figure 7 Strain distributions in the ALL-HUM models: P3 biting. Color maps of strain distributions
in the ALL-HUM variants of “extreme” and “average” modern human cranial FEMs during premolar
(P3) biting. Scales are set to range from -150–150 mɛ for both maximum principal strain (MaxPrin) and
minimum principal strain (MinPrin), from 0–300 mɛ for both maximum shear strain (Shear) and von
Mises strain (von Mises), and from 0–0.5 J/mm3 for SED. White regions exceed scale. Models are shown
at the same height.
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Variation in bite force production and efficiency
The ALL-HUM models exhibit moderate differences in bite force production and

efficiency (mechanical advantage, MA) at P3 and M2 bite points (Table 9). With respect to

bite force production, humans generated premolar bite forces that ranged from

MaxPrin          MinPrin          Shear         von Mises           SED

GRGL

BERG

KSAN1

KSAN2

MALP

TIGA

WAFR

Figure 8 Strain distributions in the ALL-HUMmodels: M2 biting. Colormaps of strain distributions in
the ALL-HUMvariants of “extreme” and “average”modern human cranial FEMs duringmolar (M2) biting.
Scales are set to range from -150–150 mɛ for both maximum principal strain (MaxPrin) and minimum
principal strain (MinPrin), from0–300mɛ for bothmaximumshear strain (Shear) andvonMises strain (von
Mises), and from 0–0.5 J/mm3 for SED. White regions exceed scale. Models are shown at the same height.
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Figure 9 Relative strain distributions. Color maps of “relative” maximum (MaxPrin) and minimum
(MinPrin) principal strains in the CHIMPED model variants during premolar (P3) and molar (M2)
biting. The scales range from !!x to !x, where !x differs in each image as follows: P3, MaxPrin/MinPrin:
GRGL, 612/644; BERG, 500/534; KSAN1, 508/603; KSAN2, 593/724; MALP, 520/610; TIGA, 455/498;
WAFR, 672/742; M2, MaxPrin/MinPrin: GRGL, 505/546; BERG, 468/525; KSAN1, 441/473; KSAN2,
505/546; MALP, 433/458; TIGA, 419/420; WAFR, 530/553. White regions exceed scale.
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333–507 N when loaded with scaled masticatory muscle forces. The MA range for

premolar biting was 0.34–0.43 with all but one individual (WAFR) occupying a narrower

range of 0.39–0.43. Molar bite forces ranged from 496–756 N. In terms of leverage,

most FEMs exhibited molar MAs of 0.57–0.64, but with the WAFR model again being

considerably less efficient (0.53).

When compared to the chimpanzee data in Smith et al. (2015a), the CHIMPED human

models analyzed here were found to exhibit somewhat lower ranges of variation in

biting MA. However, results of the Fligner-Killeen tests reveal no significant differences

in CV values between the species at either the P3 (chimp = 8.67, human = 5.65; p = 0.18)

or M2 (chimp = 8.11, human = 6.67; p = 0.13) bite point.

Variation in reaction forces generated at the TMJs
During premolar biting, all seven of the ALL-HUM models generated strongly

compressive reaction forces at both TMJs (see Table 9), similar to the results for

chimpanzees (Smith et al., 2015b). However, unlike in chimpanzees, M2 biting generated

distractive (tensile) reaction forces at the working-side TMJ that would have “pulled” the

mandibular condyle away from the articular eminence in five of the seven models. In

order to remove distractive forces, these models required reductions in the muscle force

applied to the balancing-side, which ranged from 5 to 15% (see Table 9). Interestingly,

Table 9 Bite force production, biting efficiency, and joint reaction forces in the ALL-HUM model
variants of human crania. Bite force (BF), mechanical advantage (MA), working-side TMJ reaction
force (RF-WS), and balancing-side TMJ reaction force (RF-BS) for premolar and molar biting. Five of
seven ALL-HUMmodels generated distractive (tensile) reaction forces during molar loading. Therefore,
balancing side muscle forces were iteratively reduced by 5% and re-run until distractive forces were
eliminated. Bite forces and TMJ reaction forces are in Newtons (N).

Model Muscle force

Premolar bite Molar bite

BF MA RF-WS RF-BS BF MA RF-WS RF-BS

GRGL 1,118 441 0.39 167.42 349.25 658 0.59 -11.74 329.79

GRGL1 1,090 642 0.59 -1.37 311.18

GRGL2 1,062 625 0.59 8.98 292.58

BERG 1,026 439 0.43 147.72 281.55 663 0.65 -6.98 249.09

BERG1 1,000 647 0.65 1.29 234.72

KSAN1 946 378 0.40 121.76 295.69 538 0.57 -17.49 280.57

KSAN12 898 511 0.57 0.07 249.74

KSAN2 791 333 0.42 106.83 240.30 496 0.63 -18.86 222.80

KSAN22 751 471 0.63 -4.26 197.88

KSAN23 732 459 0.63 3.04 185.41

MALP 842 344 0.41 131.09 277.66 537 0.64 -19.85 274.49

MALP2 800 510 0.64 -0.99 242.97

TIGA 1,246 507 0.41 187.96 373.24 756 0.61 13.68 336.84

WAFR 1,006 341 0.34 149.36 298.77 529 0.53 12.64 273.79

Notes:
1 Model re-run using muscle forces reduced by 5% on the balancing side.
2 Model re-run using muscle forces reduced by 10% on the balancing side.
3 Model re-run using muscle forces reduced by 15% on the balancing side.
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when loaded with chimpanzee muscle forces, all seven of the CHIMPED human models

exhibit distractive forces in the working TMJ during M2 biting, with larger muscle force

reductions required to eliminate the distraction (see below).

Biomechanical “performance” of human feeding
Structural stiffness of the human craniofacial skeleton
Direct comparisons of shape-related mechanical performance between our human FEMs

and our previously analyzed chimpanzee FEMs (Smith et al., 2015a; Smith et al., 2015b)

were permitted by the CHIMPED models. These comparisons reveal that the human

craniofacial skeleton is less stiff and experiences von Mises strains that are elevated relative

to those experienced by chimpanzees when subjected to identical loading conditions

(Fig. 10). Several of the sampled locations were found to experience significantly higher

magnitudes in humans during both P3 and M2 biting following the results of Holm-

Bonferroni-corrected Mann-WhitneyU tests (Table 10). These included the working nasal

margin (Location 12), postorbital bars (Locations 4 and 5), working zygomatic root

(Location 8), and the working dorsal orbital (Location 2). However, strains at the mid-

zygomatic arches in humans were within the range observed for chimpanzees (which are

extremely variable). Additionally, human zygomatic bodies were found to be structurally

stiff, with significantly lower von Mises strain magnitudes than chimpanzees.

Human bite force production and mechanical efficiency
Analysis of our CHIMPED human FEMs reveals that human crania are capable of

generating bite forces with higher mechanical efficiency than chimpanzees (Fig. 11).

Pairwise comparisons using the Mann-Whitey U test demonstrate that these differences

are significant at both P3 (U = 1.5, z = -2.73, exact p = 0.003) and M2 (U = 1, z = -2.79,
exact p = 0.002) bite points. However, unlike chimpanzees, all seven of the CHIMPED

human models generated highly distractive (tensile) reaction forces at the working-side

TMJ during molar biting. Therefore, molar biting in humans increases the risk of having

the muscle resultant vector fall outside the triangle of support. To bring the joint back into

compression, a reduction in balancing side muscle force of 15–30% was required

(Table 11).

DISCUSSION
In vitro validation
In order to validate the findings of our mechanical analysis, we compared in vitro

bone strain in a cadaveric human head during simulated P3 biting to the results of a

specimen-specific FEA. We found the results of our specimen-specific FEA

corresponded quite well with in vitro data. In addition to the notable similarities in

strain orientation at the 14 sampled locations, results of the regression analysis reveal

that FEA can predict in vitro strain magnitudes with a high degree of accuracy (r2 values

> 0.9). Similarly, Nagasao et al. (2005) were able to validate a dry bone human cranium

with a high degree of accuracy (r2 = 0.989). However, these authors examined only

2 gage sites and they simulated biting by applying forces to teeth, thus omitting the
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impact of muscle loading. A greater number of sites were included in an analysis by

Szwedowski, Fialkov & Whyne (2011), who found that their FEM results predicted in

vitro data with an r2 of 0.73. Toro-Ibacache et al. (2015) also applied point loads to a
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Figure 10 Line plots of von Mises microstrain generated during simulated biting in FEMs of
humans and chimpanzees. Strain data correspond to (A) left premolar (P3) and (B) left molar (M2)
biting, recorded from 14 homologous locations in the CHIMPED variants of “extreme” and “average”
modern human cranial FEMs. The gray region brackets the range of variation observed for chimpanzees
by Smith et al. (2015b).
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cadaveric human head and validated strains at two locations in a specimen-specific

FEM, finding broad similarities.

Although we found excellent correspondence between in vitro and in silico results, it is

clear that FEA does incorporate error (see Table 6). This error was deceptively large at

some “gage sites,” particularly in areas of low strain. For example, error for maximum

principal strains at the balancing dorsal orbital (Location 3) was 80%, but this represents a

difference between experimental and FEA results of only 2.67 microstrain (mɛ). Generally
speaking, this is not a meaningful difference in the context of vertebrate feeding

Table 10 Von Mises strain magnitudes: Human vs. Chimpanzee. Results of pairwise comparisons
(Mann-Whitney U-test) of von Mises strain magnitudes at the 14 locations examined between
CHIMPED variants of human FEMs and data on chimpanzees from Smith et al. (2015b). Because of
small sample sizes, the “exact” variant of p is reported (Mundry & Fischer, 1998). Comparisons that
yielded significant results following Holm-Bonferroni correction are marked by asterisks. When sig-
nificant, humans were found to exhibit the higher average value, with the exception of locations 13 and
14, where humans were found to exhibit significantly lower strain magnitudes.

Site Bite U z Exact p

1. Dorsal interorbital Premolar 9 -1.65 0.0967

Molar 10 -1.50 0.1265

2. Working dorsal orbital Premolar 0 -2.93 0.0012*

Molar 0 -2.93 0.0012*

3. Balancing dorsal orbital Premolar 4 -2.36 0.01401

Molar 7 -1.93 0.0513

4. Working postorbital bar Premolar 0 -2.93 0.0012*

Molar 1 -2.79 0.0023*

5. Balancing postorbital bar Premolar 0 -2.93 0.0012*

Molar 0 -2.93 0.0012*

6. Working zygomatic arch Premolar 14 -0.93 0.3660

Molar 14 -0.93 0.3660

7. Balancing zygomatic arch Premolar 14 -0.93 0.3660

Molar 14 -0.93 0.3660

8. Working zygomatic root Premolar 0 -2.93 0.0012*

Molar 0 -2.93 0.0012*

9. Balancing zygo root Premolar 18 -0.36 0.7308

Molar 11 -1.36 0.1807

10. Working infraorbital Premolar 2 -2.64 0.0047*

Molar 7.5 -1.86 0.0565

11. Balancing infraorbital Premolar 6 -2.07 0.03501

Molar 12 -1.21 0.2343

12. Working nasal margin Premolar 0 -2.93 0.0012*

Molar 1 -2.79 0.0023*

13. Working zygomatic body Premolar 0 -2.93 0.0012*

Molar 1 -2.79 0.0023*

14. Balancing zygomatic body Premolar 0.5 -2.86 0.0017*

Molar 1 -2.79 0.0023*

Note:*
1 Result is significant at p " 0.05.
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biomechanics, where some regions of the cranium can experience strain in the thousands of

microstrain. However, some moderately strained areas exhibited high error percentages. In

particular, the working infraorbital validated well for minimum principal strain, but error

for maximum principal strain was nearly 50%. This discrepancy may be related to the

morphology of the bone that forms the thin anterior wall of the maxillary sinus, which is

susceptible to large modeling errors (Maloul, Fialkov &Whyne, 2011), or could be a result of

simplifications to the thin bones of the nasal cavity (see Toro-Ibacache et al., 2015).

Mechanical variation
We found that the ALL-HUM models exhibited generally low levels of shape-related

mechanical variation in strain magnitude and bite force production. Additionally, though

some regions (e.g., the nasal margin) were found to exhibit large differences in strain

magnitude, our human FEMs shared a common pattern of the spatial distribution of

relatively high and low strain concentrations. These findings are similar to those of Smith

et al. (2015b), who found broad similarities in strain patterning among on a sample of

chimpanzee FEMs that differed notably in shape. Similarly, Toro-Ibacache, Zapata Muñoz

& O’Higgins (2015) found broad similarities between two notably distinct humans cranial

FEMs. Our finding that the ALL-HUM models exhibit low levels of mechanical variation

supports the functional significance of the comparisons of shape-related mechanical

performance made between our CHIMPED human FEMs and our previously analyzed

chimpanzee FEMs (Smith et al., 2015a; Smith et al., 2015b), which focused purely on

mechanical differences resulting from geometrical/architectural variation in the

craniofacial skeleton.
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Figure 11 Biting efficiency: humans vs. chimpanzees. Box-and-whisker plots show the minimum, first
quartile, median, third quartile, and maximum biting efficiency, as quantified using the MA, in the
CHIMPED variants of human cranial FEMs vs. chimpanzees at (A) premolar (P3) and (B) molar (M2)
bite points. Chimpanzee data is from Smith et al. (2015b).
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Mechanical performance in humans and chimpanzee
Craniofacial strength: Is the human face weak?
Our results suggest that the modern human craniofacial skeleton is structurally less

strong, in terms of resistance to masticatory stress, than that of chimpanzees when

subjected to identical loading conditions (i.e., same properties and constraints, muscle

forces scaled to model size). In the CHIMPED variants of our human FEMs, most of the

locations analyzed experienced von Mises strain magnitudes that were elevated relative to

chimpanzees, in particular the working nasal margin, the postorbital bars, the working

zygomatic root, and the working dorsal orbital region. Exceptions to this pattern include

the zygomatic arches, where strains were bracketed by the range of values seen in chimp

Table 11 Bite force production, biting efficiency, and joint reaction forces in the CHIMPED model
variants of human crania. Bite force (BF), mechanical advantage (MA), working-side TMJ reaction
force (RF-WS), and balancing-side TMJ reaction force (RF-BS) for premolar and molar biting. All seven
CHIMPED models generated highly distractive (tensile) reaction forces during molar loading that
would have increased the chances of joint dislocation and/or injury. Therefore, balancing side muscle
forces were iteratively reduced by 5% and re-run until distractive forces were eliminated. Bite forces and
TMJ reaction forces are in Newtons (N).

Model Muscle force

Premolar bite Molar bite

BF MA RF-WS RF-BS BF MA RF-WS RF-BS

GRGL 3,965 1,724 0.43 499.82 1,189.57 2,570 0.65 -208.16 1,113.51

GRGL1 3,569 2,316 0.65 -31.26 841.64

GRGL2 3,469 2,252 0.65 12.96 773.68

BERG 3,637 1,720 0.47 405.08 935.03 2,599 0.71 -185.65 819.81

BERG2 3,183 2,277 0.71 -6.72 560.17

BERG3 3,092 2,213 0.71 29.07 508.24

KSAN1 3,353 1,462 0.44 343.26 1,030.37 2,080 0.62 -187.95 975.38

KSAN12 2,934 1,822 0.62 -0.30 687.33

KSAN13 2,850 1,771 0.62 37.23 629.72

KSAN2 2,804 1,272 0.45 311.70 821.79 1,895 0.68 -163.75 757.22

KSAN22 2,454 1,658 0.68 -11.46 529.80

KSAN23 2,384 1,610 0.68 18.99 484.32

MALP 2,986 1,358 0.45 384.41 966.38 2,118 0.71 -203.31 963.66

MALP2 2,613 1,851 0.71 -2.01 667.11

MALP3 2,538 1,797 0.71 38.25 607.81

TIGA 4,418 1,941 0.44 564.13 1,288.46 2,896 0.66 -107.59 1,143.16

TIGA4 4,197 2,750 0.66 -13.27 997.33

TIGA5 4,086 2,678 0.66 33.89 924.42

WAFR 3,567 1,383 0.39 489.34 1,103.22 2,146 0.60 -61.09 1,006.50

WAFR6 3,478 2,091 0.60 -24.01 946.69

WAFR4 3,389 2,036 0.60 13.07 886.88

Notes:
1 Model re-run using muscle forces reduced by 20% on the balancing side.
2 Model re-run using muscle forces reduced by 25% on the balancing side.
3 Model re-run using muscle forces reduced by 30% on the balancing side.
4 Model re-run using muscle forces reduced by 10% on the balancing side.
5 Model re-run using muscle forces reduced by 15% on the balancing side.
6 Model re-run using muscle forces reduced by 5% on the balancing side.
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FEMs, and the prominence of the zygomatic body (i.e., the “cheek bone”), which is

apparently strong in modern humans.

During unilateral P3 biting, the nasal margin of modern humans experienced von

Mises strains that were on average more than 350% greater than chimpanzees. Similarly,

previous investigations identify the “root” of the nasal margin to be an area of high stress

and strain during masticatory loading in humans (Endo, 1965; Endo, 1966; Arbel,

Hershkovitz & Gross, 2000; Szwedowski, Fialkov & Whyne, 2011; Maloul et al., 2012). This

region is often described as a pillar-like structure (Benninghoff, 1925; Bluntschli, 1926), or

section of a frame-like structure (Görke, 1904; Endo, 1965; Endo, 1966), that resists mainly

compression during anterior tooth biting. The results of our analysis are in general

agreement with these findings, except that tension at the nasal margin was also found to be

high in magnitude, indicating intense bending and shearing of the lower maxillary region

during anterior tooth biting (see Figs. 7 and 9).

In addition to the nasal margin, the postorbital bars of the human FEMs were also

found to experience highly elevated von Mises strain magnitudes compared to

chimpanzees. However, adjacent regions, including the zygoma/zygomatic body (“cheek

bone”) region and zygomatic arch, were found to be similar in strength to the lower end of

the chimpanzee range. Mechanical analyses of Paranthropus boisei and Australopithecus

africanus (Smith et al., 2015a) show a similar pattern of relatively low strains in the

zygomatic body. Smith et al. (2015a) suggest that the structural strength of the zygomatic

body in australopiths could be adaptively significant, offering as one possibility that it

serves to reduce strains in the nearby zygomatico-maxillary suture. In pigs, it has been

demonstrated that unfused sutures can fail at relatively modest stress levels (e.g., Popowics

& Herring, 2007), so some bony facial regions may serve to shield nearby sutures from

masticatory stresses rather than bone itself (Wang et al., 2012). Among smaller-faced

modern human crania, the zygomatico-maxillary suture may be especially prone to

experiencing relatively large masticatory stresses. In our FEMs, the largest strains in

this region of the mid-face were generated medial to the zygomatico-maxillary suture.

The location of these elevated strain magnitudes corresponds roughly to the location

of facial fractures experienced commonly during physical altercations (Ellis, El-Attar &

Moos, 1985). Facial fractures are also common at the postorbital bar, as opposed to the

zygomatic body or zygomatico-maxillary suture, when the zygomatic body is exposed

to traumatic blows (Ellis, 2012; Pollock, 2012). Therefore, it is possible that the strength

of the human zygomatic body, and perhaps the relative weakness of the postorbital bar,

is related to diverting stress from sutures that might otherwise fail under relatively

lower stress magnitudes.

Like the zygomatic body (“cheek bone”) region, humans were found to exhibit lower

average von Mises strains and markedly lower peak strains than chimpanzees at the mid-

zygomatic arch, although human values were bracketed by the range of chimp values. This

potentially reflects differences in arch length. Specifically, the size of the temporalis

muscle, which is correlated with the area of the infratemporal fossa (Weijs & Hillen, 1984),

is significantly reduced in humans compared to that of chimpanzees (Taylor & Vinyard,

2013). Demes & Creel (1988) show that the area of the infratemporal fossa is nearly half
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that of chimpanzees, meaning that the total length of the zygomatic arch is also reduced.

Bone strain analyses demonstrate that the arch is subjected to sagittal bending, as well as

torsion along its long axis (e.g.,Hylander, Johnson & Picq, 1991;Hylander & Johnson, 1997;

Ross, 2001; Ross et al., 2011). Predictions based on beam theory therefore suggest that a

decrease in the length of the arch will lessen these bending and torsional moments,

whereas a reduction in the height and/or breadth of the arch will weaken it under bending

and shear, respectively.

Functional interpretations based on the morphology of the zygomatic arch are

complicated by the fact that the temporalis fascia has been hypothesized to stabilize it

from the inferiorly-directed pulling action of the masseter muscle (Eisenberg & Brodie,

1965). Curtis et al. (2011) tested this hypothesis using FEA and found that models that do

not include the temporalis fascia will overestimate strains in the arch and surrounding

regions, including the postorbital bar and infraorbital. However, they also found that their

models lacking a fascia generated strains more similar in magnitude to those collected

during in vivo experiments (Hylander, Johnson & Picq, 1991; Hylander & Johnson, 1997;

Ross, 2001; Ross et al., 2011). Similarly, previous FEA studies on primate crania that have

not included a modeled fascia (e.g., Ross et al., 2005; Ross et al., 2011; Strait et al., 2005)

also find broad agreement with in vivo data. Therefore, we did not feel that it was

necessary to include this structure in our FEMs. Importantly, Curtis et al. (2011) did not

actually model the temporalis fascia, rather, they applied external forces along the margin

of the attachment of the fascia. This procedure assumes that the load transferred to bone

by the fascia is evenly distributed around its perimeter. However, the fascia is subjected to

load by the inferiorly directed force produced by those temporalis fibers that arise off of

the deep surface of the fascia. This force should elevate tension in the fascia along its

superior margin (i.e., where it arises off of the superior temporal line) while reducing

tension along its inferior margin (i.e., along the arch). This factor may mitigate the role of

the fascia in resisting the contraction of the masseter muscle.

Although the brow ridges are not thought to play an important role in masticatory

stress resistance (e.g., Picq & Hylander, 1989; Hylander, Johnson & Picq, 1991; Ravosa,

1991a; Ravosa, 1991b; Ravosa et al., 2000) it is interesting to note that our human FEMs

experienced higher von Mises strain magnitudes than chimpanzees at all three of the

supraorbital sites examined, particularly during premolar biting. Between the human and

chimpanzee samples, differences were found to be greatest at the working and balancing

dorsal orbitals, not the dorsal interorbital, supporting the idea that the brow ridge cannot

be modeled as a bent beam (Picq & Hylander, 1989; see also Chalk et al., 2011). The fact

that the smaller brows of humans experienced elevated strain magnitudes during biting

could be interpreted as meaning that large brow ridges are an adaptation to resist

masticatory loads. However, a wealth of experimental data on humans and non-human

primate species has shown (e.g., Hylander, Johnson & Picq, 1991; Ravosa et al., 2000;

Szwedowski, Fialkov &Whyne, 2011; Ross et al., 2011;Maloul et al., 2012) that strains along

the supraorbital margin are relatively low during biting and chewing, which is supported

by the results presented here. Therefore, it is more reasonable to interpret differences in

supraorbital morphology between humans and chimpanzees as being related to some

Ledogar et al. (2016), PeerJ, DOI 10.7717/peerj.2242 32/47

http://dx.doi.org/10.7717/peerj.2242
https://peerj.com/


non-dietary function, and that the resulting increases in brow ridge strain among humans

are experienced as a secondary byproduct. For example,Moss & Young (1960) suggest that

a large separation is formed posterior to the orbits when brain size is small, forming a

supraorbital ridge. When brain size is large, the frontal bone is more steeply inclined

posterior to the orbits, forming a vertical forehead rather than a large torus. A byproduct

of this missing bar of bone above the orbits among modern humans could be that strain

magnitudes are mildly elevated in that region.

Overall, our findings show that the human craniofacial skeleton is weaker than that of

chimpanzees when subjected to feeding loads. These findings support the hypothesis

that dietary changes involving a shift to softer and/or more processed foods along the

modern human lineage has led to masticatory gracilization and reduced structural

strength of the bony facial skeleton (e.g., Lieberman et al., 2004). However, in their

biomechanical analysis, Wroe et al. (2010) recently found that although the human

cranium is less robust, it experiences low peak strains and an even distribution of facial

strain magnitudes compared to extant apes and fossil australopith species. Differences

between our results and those of Wroe et al. (2010) could reflect differences in the

way muscle loads were applied to the models in each analysis and/or the manner in

which models were constrained. For example, we applied both normal and tangential

tractions over entire muscle areas using Boneload (Grosse et al., 2007), whereas Wroe

et al. (2010) loaded their models with muscles modeled as straight pre-tensioned beam

elements. However, we conducted a sensitivity analysis to explore this possibility

further (see Supplemental Information) and found that these differences in

methodology only resulted in small differences in strain magnitude at most locations

across the craniofacial skeleton.

Another possible explanation for the differences between our study and the study by

Wroe et al. (2010) relates to the magnitudes of the applied muscle forces.Wroe et al. (2010)

subjected their FEMs to three sets of simulated biting on various teeth. In their first

simulation of the three, FEMs were assigned a set of species-specific muscle forces

(or muscle force estimates) from the literature. In a second simulation, models were scaled

to the surface area of their chimpanzee model and re-loaded using chimpanzee muscle

forces. Lastly, in the third simulation, models were scaled to the surface area of their

chimpanzee model and loaded with muscle loads required to generate an equivalent bite

force. In this third simulation, the high biting leverage offered by the retracted human face

meant that the muscle forces required to generate a bite compared to the other hominoids

examined were relatively low. Therefore, Wroe et al. (2010) concluded that the human

facial skeleton may in fact be well-adapted to resist masticatory stresses generated during

high magnitude biting. Importantly, however, mean element von Mises stresses were

found to be relatively high in their human FEM during the second simulation, where

FEMs were scaled to the same surface area and loaded with equivalent muscle forces. This

is the most similar of their three scaling procedures to the scaling performed here (scaling

muscle forces to model volume2/3), which we believe is the best means for removing

the effects of size on comparisons of mechanical performance (e.g., Dumont, Grosse &

Slater, 2009; Strait et al., 2010).
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Bite force production and efficiency: are humans suited to
produce large biting forces?
When analyzed using human bone and muscle properties (i.e., ALL-HUM models), our

human FEMs produced bite forces of 333–507 N at the premolar (P3) and 496–756 N at

the molar (M2). These results are similar to, but lower than, previous estimates of human

bite force production using both 2D and 3D modeling techniques (e.g., Wroe et al., 2010;

Eng et al., 2013). For example, using skeletal measurements and data on muscle cross-

section, Eng et al. (2013) recently estimated that humans are capable of producing

approximately 660–1106 N of M2 bite force, while Wroe et al. (2010) estimated a

maximum unilateral M2 bite force of 1109–1317 N using FEA. However, our M2 bite force

results are bracketed by bite force transducer data collected from various western

populations, which range from approximately 368 N (Sinn, de Assis & Throckmorton,

1996) to around 911 N (Waltimo, Nystram & Kananen, 1994), although Inuit males have

been shown to produce an average of 1277 N in M2 bite force (Waugh, 1937). Therefore,

our results for bite force production lie within and do not exceed the known range of in

vivo variation exhibited by recent human populations.

Because chimpanzees have absolutely and relatively larger jaw adductor muscles than

humans (e.g., Taylor & Vinyard, 2013), it is no surprise that the chimp FEMs were capable

of producing more forceful bites than our human FEMs when loaded with species-specific

muscle forces (compare data in Table 9 to Smith et al. (2015b), Table 4). However,

when loaded with muscle forces scaled to remove differences in size (as in the CHIMPED

model variants), we found that humans are more efficient producers of bite forces, in

terms of biting leverage, consistent with the findings ofWroe et al. (2010). Specifically, the

MA for P3 biting in humans ranged 0.39–0.47, compared to 0.32–0.42 in chimpanzees

(Smith et al., 2015b), with only two chimps overlapping the human range. Humans were

found to exhibit even more elevated leverage during M2 biting (0.60–0.71), with only one

individual overlapping the chimpanzee range (0.49–0.61). When comparing these data

using the Mann-Whitey U test, humans were found to be significantly more efficient at

producing bite forces at both mesial and distal bite points. The CHIMPED humans were

even found to exhibit a biting efficiency similar to that observed in australopiths (Smith

et al., 2015a). In fact, P3 MA in P. boisei (0.40) and A. africanus (0.41) were near the lower

end observed in humans. The FEM of A. africanus also generated M2 bites with similar

efficiency (0.62) to humans, whereas P. boisei produced more mechanically efficient (0.75)

molar bites (Smith et al., 2015a).

Our data on bite force efficiency in humans support previous findings that have

demonstrated the mechanical advantage of modern human bony facial architecture

compared to both non-modern humans and non-human primate species (e.g., Spencer &

Demes, 1993; O’Connor, Franciscus & Holton, 2005; Lieberman, 2008; Lieberman, 2011;

Wroe et al., 2010; Eng et al., 2013). Using estimates of muscle leverage from 2D

measurements (Lieberman, 2008; Lieberman, 2011), humans have been shown to achieve

high biting leverage through a marked degree of facial retraction (orthognathism), which

reorients the muscles of mastication relative to the tooth rows. As noted above, we found
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that our human FEMs produced bite forces with leverage ratios similar to those observed in

A. africanus and P. boisei (Smith et al., 2015a). However, australopiths achieve high biting

leverage through an anterior positioning of the chewing muscles relative to the tooth rows

(Rak, 1983; Strait et al., 2009; Strait et al., 2010; Smith et al., 2015a). In humans, the

midfacial region is “tucked” beneath the anterior cranial fossa (Lieberman, McBratney &

Krovitz, 2002; Lieberman et al., 2004; Lieberman, 2008; Lieberman, 2011), which similarly

places bite points in a position that offers highermechanical advantage to the jaw adductors.

Although the human cranium can theoretically produce mechanically efficient bite

forces, the production of unilateral molar (M2) bite force is limited by the risk of

TMJ distraction, as predicted by the constrained lever model (Greaves, 1978; Spencer,

1998; Spencer, 1999). Specifically, we found that all seven of the CHIMPED human FEMs

experienced a highly distractive (tensile) reaction force at the working-side joint during

molar biting. These forces have the effect of “pulling” the mandibular condyle from

the jaw joint, increasing the risk of joint dislocation (Spencer, 1998; Spencer, 1999). As

noted in the introduction, the soft tissues of the mammalian jaw joint are well suited to

resist compressive joint reaction forces, but are poorly configured to resist distractive

joint forces that “pull” the mandibular condyle from the cranial base (Greaves, 1978;

Spencer, 1998; Spencer, 1999). In contrast, only one of the six chimpanzee FEMs analyzed

by Smith et al. (2015a) generated a tensile force at the working TMJ, and this reaction

was only very weakly tensile (12.7 N). Similarly, Smith et al. (2015b) found that their

FEMs of P. boisei and A. africanus lacked working-side distraction and were able to

produce “stable” bites on both the premolars and molars, offering these species the

ability to produce maximally forceful molar bites with limited risk of causing pain

and/or damage to the TMJ capsule.

Interestingly, when loaded with human muscle forces (i.e., ALL-HUM), two of the

human FEMs (TIGA and WAFR) were capable of maintaining weakly compressive

reaction forces at both TMJs during molar biting. Additionally, balancing side

force reductions required to eliminate distraction in the remaining models were

proportionately less (5–15%) than when applying chimpanzee forces (15–30%).

Comparisons of the muscle loads applied to the models and their force ratios in the

ALL-HUM and CHIMPEDmodels (see Tables 9 and 11) reveal that chimpanzees devote a

higher proportion of muscle strength to anteriorly-positioned muscle compartments

(superficial masseter and anterior temporalis) compared to more posteriorly-positioned

ones (deep masseter and medial pterygoid). Therefore, it is tempting to suggest that

changes in human jaw muscle force ratios may have coincided with the retraction of the

lower face during human evolution in order to reduce the risk of TMJ distraction.

Likewise, if the repositioning of cranial elements for reasons other than food processing

(Lieberman, 2008; Zink & Lieberman, 2016) led to an increase in biting efficiency but the

generation of working side joint distraction during molar biting, the overall reduction

of chewing muscle size in Homo could also be viewed as a result of positive selection

rather than relaxed selection so as to lessen these distractive forces.

Our findings that humans are limited in their ability to produce forceful unilateral

molar bites are supported by data on bite force and muscle activity in humans.
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Spencer (1995) and Spencer (1998) tested some predictions of the constrained lever model

and found that humans produced bite forces that increased as the bite point moved

from the incisors to the first molar. However, moving from M1 to M3, bite forces were

found to decrease as a result of the decreasing balancing force muscle recruitment

required to avoid joint distraction. Spencer (1995) also notes that most of the participants

(8 of 10) in his analysis reported pain near the working-side TMJ when biting forcefully

using the back molars. In addition to this study, Hylander (1977) suggests that specialized

anterior tooth biting and increased masticatory muscle leverage may be related to the

high incidence of third molar reduction and agenesis among modern Inuit due to the

increased risk of distraction when biting on these teeth, although the results of our

single pre-historic Arctic FEM (TIGA) provide no support for this hypothesis. Similarly,

Spencer (2003) demonstrates that seed predating New World primates with adaptations

for increased anterior bite force have relatively small third molar roots.

As discussed above, Wroe et al. (2010) analyzed human feeding biomechanics within a

comparative context. One of the principal findings of their analysis, supported by the data

presented here, is that humans are capable of generating bite forces with higher mechanical

efficiency than chimpanzees. Wroe et al. (2010) use this as evidence to argue that human

craniofacial evolution may have been influenced by selection for powerful biting behaviors.

However, the results of this study showing the comparative weakness of the human cranium

combined with the increased risk of jaw joint distraction during molar biting leads us to

interpret the increased biting leverage exhibited by humans, which is particularly high

among recent populations (Spencer & Demes, 1993; O’Connor, Franciscus & Holton, 2005),

to be a byproduct of human facial orthognathism, which may be at least partly related to

facial size reduction. Human facial flatness may also have been acquired through selection

for some non-dietary function. For example, Lieberman (2008) and Lieberman (2011)

suggests that the marked degree of facial retraction exhibited by modern human crania

could be related to changes in brain size and cranial base flexion. However, Ross (2013)

shows that basicranial flexion cannot produce significant facial retraction on its own.

Alternatively, Holton et al. (2010) propose that dietary shifts leading to reduced facial strain

magnitudes among early human species may have led to reduced facial growth and earlier

fusion of the maxillary sutures, and thus smaller and more retracted facial skeletons.

Although the majority of the morphological and mechanical evidence is not consistent

with the hypothesis that the humanmasticatory apparatus has experienced recent selection

for high magnitude biting, the results of our analysis cannot reject the hypothesis that, in

addition to changes in diet and tool use, increases in muscle force efficiency during human

evolution could have led to relaxed selection for large chewing muscle size and reductions

in facial size (Wroe et al., 2010) or that humans benefited from increased biting leverage

when using submaximal forces by exerting less energy per bite. Our results for premolar

biting leverage also do not conflict directly with the hypothesis that anterior tooth biting

could have been selectively important in humans. However, the reduced size of the premolar

teeth in humans increases the risk of tooth crown fracture (Constantino et al., 2010).

Therefore, studies on premolar size and strength are not consistent with the hypothesis

that humans are particularly well adapted for forcefully loading their anterior teeth, but
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such studies have yet to be conducted on incisors or canines, which are the more likely to be

used during paramasticatory activities. For example, Hylander (1977) identifies features

of the modern Inuit craniofacial skeleton that he argues to be adaptations for powerful

biting behaviors using the incisors, although our single pre-historic Arctic FEM (TIGA) was

not found to be exceptional in this regard. Additionally, Spencer & Ungar (2000) show that

incisor bite force leverage varies in relation to the intensity of incisor tooth use among some

Native American populations. Similarly, it is possible that differences in anterior tooth

use among “archaic” members of the genus Homo are reflected in mechanical differences

between the species. In particular, the Neanderthals (H. neanderthalensis) exhibit a

number of derived characteristics hypothesized to be adaptations for forceful incisor biting

(e.g., Brace, 1962; Smith, 1983; Trinkaus, 1983; Trinkaus, 1987; Rak, 1986; Demes, 1987).

Notably, Spencer & Demes (1993) show that Neanderthals exhibit high incisor bite force

leverage relative to H. heidelbergensis (but not modern H. sapiens). In order to maintain

functional use of the posterior dentition (i.e., avoid TMJ distraction), Spencer & Demes

(1993) further show that the molar tooth row in Neanderthals was anteriorly shifted,

resulting in the characteristic retromolar gap.

Data on enamel thickness seemingly contrasts with the hypothesis that humans have

experienced relaxed selection for powerful biting behaviors. Specifically, a number of

studies find that recent human populations exhibit thick molar enamel (e.g.,Martin, 1983;

Martin, 1985; Olejniczak et al., 2008; Smith et al., 2006; Vogel et al., 2008), which has been

interpreted as a primitive retention. However, notwithstanding disagreements over the

significance of enamel thickness (Grine, 2005), Smith et al. (2012) recently show that

“thick” molar enamel in humans is primarily the result of small coronal dentine areas.

They found that enamel area in humans is reduced, but there was a disproportionately

large reduction in dentine to enamel as human teeth were evolving smaller size, resulting

in a relatively “thick” enamel cap. Thus, Smith et al. (2012) argue that the dichotomy

between thick and thin enamel is an oversimplification.

CONCLUSIONS
We examined the biomechanical consequences of human masticatory gracilization and

intraspecific variation within the constrained lever model of feeding biomechanics

(Spencer, 1999) and tested the hypothesis that the human face is well configured to

generate and withstand high biting forces relative to chimpanzees. We found that our

biomechanical models of human crania were, on average, less structurally stiff than the

crania of chimpanzees when assigned equivalent bone properties, constraints, and

physiologically-scaled muscle forces. These results are consistent with the facial reduction

exhibited by modern humans. We also found that modern humans are efficient producers

of bite force, consistent with previous analyses (Spencer & Demes, 1993; O’Connor,

Franciscus & Holton, 2005; Lieberman, 2008; Lieberman, 2011;Wroe et al., 2010; Eng et al.,

2013), but that distractive (tensile) reaction forces are generated at the working (biting)

side jaw joint during M2 biting. In life, such a configuration would have increased the

risk of joint dislocation and constrained the maximum recruitment levels of the

masticatory muscles, meaning that the human cranium is poorly suited to produce
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forceful unilateral molar bites. Our results do not conflict directly with the hypothesis that

premolar biting could have been selectively important in humans, although the reduced

size of these teeth in humans has been shown to increase the risk of tooth crown fracture.

We interpret our results to suggest that human craniofacial evolution was probably not

driven by selection for high magnitude biting, and that increased masticatory muscle

efficiency in humans is likely to be a byproduct of selection for some non-dietary function

(Lieberman, 2008) or perhaps related to reduced masticatory strain and sutural growth

restrictions (Holton et al., 2010).

Our results provide support for the hypothesis that a shift to the consumption of less

mechanically challenging foods and/or the innovation of extra-oral food processing

techniques (e.g., stone tool use, cooking) along the lineage leading to modernHomo sapiens

relaxed the selective pressures maintaining features that favor forceful biting and chewing

behaviors, including large teeth and robust facial skeletons, leading to the characteristically

small and gracile faces of modern humans (e.g., Brace, Smith & Hunt, 1991; Wrangham

et al., 1999; Lieberman et al., 2004;Ungar, Grine & Teaford, 2006;Wood, 2009). To contribute

to our further understanding, future studies should aim to identify the ecological changes

that may have led to the emergence of such shifts in dietary behavior. Were these

changes initiated by changes in climate, competition, resource availability, or some

combination of these factors? To what extent is craniofacial gracilization part of a general

pattern of skeletal gracilization in humans (Ruff et al., 1993; Ruff et al., 2015; Chirchir et al.,

2015; Ryan & Shaw, 2015)? These questions will be addressed by gaining further insight into

the dietary ecology and feeding adaptations of species near the origins of the modern

human lineage through work on biomechanics, paleoecology, archaeology, bone chemistry,

and dental wear, each of which inform key components necessary to obtaining a more

complete understanding of human craniofacial evolution.
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