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Abstract

Rationale: Obstructive sleep apnea (OSA) has been associated with
kidney function loss, which may be related to changes in the
renin–angiotensin system (RAS).

Objectives:We sought to determine the effect of continuous
positive airway pressure (CPAP) of patients with OSA on renal
hemodynamics at baseline and in response to angiotensin II (AngII),
which reflects RAS activity.

Methods: Twenty normotensive, nondiabetic, newly diagnosed OSA
subjects (15 men, 5 women, 506 2 yr, respiratory disturbance index
[RDI]. 15 h21) with nocturnal hypoxemia (SaO2

, 90% for.12%
of the night) were studied in high-salt balance pre- and post-CPAP
therapy (.4 h CPAP use/night for 1 mo). Glomerular filtration
rate (GFR), renal plasma flow (RPF), and filtration fraction (FF)
(a surrogate marker for intraglomerular pressure) were measured pre-
and post-CPAP using inulin and para-aminohippurate clearance
techniques at baseline and in response to graded AngII infusion
(3 ng/kg/min3 30 min and 6 ng/kg/min3 30 min, respectively).

Measurements and Main Results: CPAP corrected OSA and
hypoxemia (RDI: 426 4 vs. 46 1 h21, P, 0.001; duration
SaO2

, 90%: 36%6 5% vs. 66 2%, P, 0.001). CPAP reduced GFR
(1246 8 ml/min vs. 1106 6 ml/min, P = 0.014), increased
RPF (6926 36ml/min vs. 7496 40ml/min, P = 0.059), and reduced
baseline FF (18.96 1.6% vs. 15.36 1.0%, P = 0.004). Post-CPAP
demonstrated a blunted GFR response (296 3 ml/min vs.226
2 ml/min, P = 0.033) and augmented RPF response (21826
22 ml/min vs.22196 25 ml/min, P = 0.024) to AngII. FF response
was maintained (P = 0.4). CPAP reduced baseline mean arterial
pressure (946 2 vs. 896 2 mm Hg, P = 0.002), plasma aldosterone
(1496 18 vs. 1096 10 pmol/L, P = 0.003), and urinary protein
excretion (61 [39–341] mg/day vs. 56 [22–204] mg/d, P = 0.003).

Conclusions: CPAP therapy was associated with improved renal
hemodynamics and down-regulation of renal RAS activity,
suggesting a potential therapeutic benefit for kidney function.

Keywords: continuous positive airway pressure; nocturnal
hypoxemia; obstructive sleep apnea; renal hemodynamics;
renin–angiotensin system

Obstructive sleep apnea (OSA) is highly
prevalent in chronic kidney disease (CKD),
occurring in 25–54% of patients (1–5).

Nocturnal hypoxemia has also been
associated with loss of kidney function
(3, 6, 7). Importantly, continuous positive

airway pressure (CPAP) is an effective
treatment for OSA (8). The mechanism
underlying the loss of renal function
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associated with OSA is unclear, but limited
studies suggest a prominent role of the
renin–angiotensin system (RAS), activation
of which results in a predisposition to
kidney and vascular disease (9).

The mechanism underlying the loss of
renal function associated with OSA is
unclear, though recently the role of kidney
tissue hypoxia in the development of
nephropathy has been highlighted (10).
Limited studies suggest a prominent role
of the RAS in the setting of chronic
intermittent hypoxia (11–13), activation of
which results in a predisposition to kidney
and vascular disease (9). Multiple lines of
evidence have underscored the importance
of up-regulated RAS activity in both
initiation and progression of kidney disease
(14, 15). However, reports on the
association between OSA and the RAS in
humans are conflicting (16–22). One study
reported OSA patients to have increased

filtration fraction compared with healthy
controls and CPAP therapy for 1 week
improved filtration fraction, a marker of
glomerular hyperfiltration and risk of
kidney function loss in OSA patients not
receiving RAS blockade therapy (22).
However, to our knowledge, there have
been no studies conducted to date in which
researchers examined activity of the renal
RAS as a primary outcome.

The high prevalence of OSA in the
CKD population, coupled with the
uncertainty of the effects of CPAP on kidney
function and renal RAS activity, prompted
our examination of the relationship between
CPAP and change in renal hemodynamics
as well as RAS activity in a cohort of
otherwise healthy OSA patients before and
after initiation of CPAP therapy. At present,
there is no readily available means of
assessing intrarenal RAS activity in humans.
However, the renal plasma flow (RPF)
response to infused angiotensin II (AngII) is
an indirect measure of the intrinsic activity
of the intrarenal RAS and, in the setting
of high sodium balance, is inversely
correlated with endogenous RAS activity
(23–25). We hypothesized that use of
CPAP therapy would result in an increase
in the RPF vasoconstrictor response to
AngII, signifying a decrease in renal RAS
activity. Some of the results of this study
have previously been reported in the form
of an abstract (26).

Methods

Subjects
Subjects with OSA were recruited from
community patients referred for suspected
OSA to the Foothills Medical Centre Sleep
Centre and a respiratory home care
company (Healthy Heart Sleep Co.), both in
Calgary, Alberta, Canada, between June
2011 and May 2012. Men and women ages
18–70 years with moderate to severe OSA
and significant nocturnal hypoxemia were
eligible to participate in the study. All
subjects underwent a medical history,
physical examination, and laboratory
screening. Exclusion criteria included
cardiovascular, cerebrovascular, and kidney
disease; uncontrolled hypertension (blood
pressure [BP] .140/90 mm Hg despite
maximal use of antihypertensive
medications); diabetes mellitus; severe
lung disease; current treatment for OSA;
current smoking; pregnancy; and use of

nonsteroidal anti-inflammatory
medications or exogenous sex hormones.
The study protocol was approved by the
Conjoint Health Research Ethics Board
at the University of Calgary. Written
informed consent was obtained from all
study subjects in accordance with the
Declaration of Helsinki.

Sleep Apnea and
Hypoxemia Assessment
Additional details on the method used to
assess severity of OSA and hypoxemia status
are provided in an online supplement.
Briefly, subjects performed an unattended,
overnight cardiopulmonary monitoring
examination at home (Remmers Sleep
Recorder Model 4.2; Saga Tech Electronic,
Calgary, AB, Canada), which has been
validated by comparison to attended
polysomnography (27, 28). Sleep apnea was
defined as a respiratory disturbance index
(RDI) > 15, as this reflects moderate to
severe sleep apnea that is likely to be
clinically significant (27, 28). Nocturnal
hypoxemia was defined as in other studies
(29) as a SaO2

, 90% for >12% of the
duration of nocturnal monitoring.

Study Protocol
The study protocol we used for assessment
of RAS activity is well-established (23, 25,
30, 31), and additional details are provided
in an online supplement. Glomerular
filtration rate (GFR), RPF, BP, and
circulating RAS components (plasma renin
activity [PRA] and aldosterone) were
measured at baseline and in response to
AngII challenge (3 ng/kg/min 3 30 min,
6 ng/kg/min 3 30 min, respectively) as
an index of RAS activity (23, 25, 30, 31)
followed by a 30-minute recovery period.
Blood samples were collected at baseline
and every 30 minutes thereafter throughout
the study period. All subjects provided
a second morning spot urine for
determination of urinary sodium to verify
compliance with the high-salt diet (32).
Subjects on medications which interfere
with RAS activity were switched to
a calcium-channel blocker (amlodopine) to
achieve adequate BP control 2 weeks prior
to each study day, as these agents are
considered to have a neutral effect on the
RAS (33). BP was recorded every 15
minutes with an automatic recording device
(Critikon DINAMAP ProCare Monitor; GE
Medical Systems, Milwaukee, WI). Subjects
were studied in the supine position using

At a Glance Commentary

Scientific Knowledge on the
Subject: Obstructive sleep apnea
(OSA) has been associated with loss of
kidney function, and limited studies
suggest a role for the renin–angiotensin
system (RAS) in mediating the
pathophysiology. Continuous positive
airway pressure (CPAP) is an effective
treatment for OSA, but the effect on
the RAS remains unknown.

What This Study Adds to the
Field: To our knowledge, this is first
study to examine the effect of CPAP
treatment on renal hemodynamics and
the intrarenal RAS. Treatment of OSA
with CPAP resulted in (1) reduced
filtration fraction, (2) decreased
baseline aldosterone levels, and (3)
reduced renal RAS activity as reflected
by the greater decrease in renal plasma
flow in response to angiotensin II
post-CPAP therapy. These findings
suggest not only that treatment of
OSA with CPAP reduces glomerular
pressure, a marker of renal risk, but
that the mechanism by which this
occurs involves down-regulation of
renal RAS activity. These findings
support a role for the RAS in
mediating OSA-induced hypertension
and kidney disease in humans.
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a standard cuff placed on the right arm. The
mean of two readings taken by the same
registered nurse (D.Y.S.) were recorded.
Mean arterial pressure (MAP) was
calculated as one-third systolic BP (SBP)
and two-thirds diastolic BP (DBP).
Filtration fraction (FF), a surrogate marker
of glomerular pressure, was calculated
as the GFR/RPF ratio. Renal vascular
resistance (RVR) was calculated as the
MAP/RPF ratio. Details regarding
laboratory measurements are provided
in an online supplement.

CPAP Treatment
After completing the first study day, subjects
were treated with CPAP therapy as per the
guidelines for treatment of OSA (8). All
subjects underwent an auto-CPAP trial to
determine individual CPAP requirement.
Initial auto-CPAP settings were 16/6 cm
H2O and were automatically titrated
according to the CPAP unit titration
algorithm to optimize therapy. If airflow
limitation or nocturnal hypoxemia was not
fully corrected, subjects were switched to
fixed CPAP, which was estimated from
the CPAP level at the 95th percentile.
Adherence to CPAP therapy was monitored
by electronic download from the unit
each month. Once satisfactory CPAP
adherence was achieved (defined as CPAP
use for .4 h/night on .70% nights for
4 wk) (8) and correction of OSA and
nocturnal hypoxemia was confirmed by
a repeat Level 3 sleep test while using
CPAP, subjects underwent reassessment of
RAS activity and kidney function identical
to the pre-CPAP assessment during a
second study day.

Analysis
Data are reported as mean 6 SE, number
(percentage), or median (range) as
appropriate. Our primary outcomes were
the changes (D) in renal hemodynamics
(GFR, RPF, FF, and RVR) at baseline and
in response to AngII (3 ng/kg/min and
6 ng/kg/min, respectively) as a measure
of renal RAS activity pre- and post-CPAP
therapy. Secondary study outcomes were
the changes in BP, PRA, and aldosterone
at baseline and in response to AngII pre-
and post-CPAP. Pre- and post-CPAP
comparisons were made using the
Wilcoxon signed-rank test. To examine
the response to AngII on each study
day, we conducted a repeated-measures
analysis of variance with a Bonferroni

correction for outcomes with multiple
measurements.

Sensitivity analyses were conducted
excluding subjects with controlled
hypertension, female subjects, and subjects
with persistent nocturnal hypoxemia while
on CPAP. We sought to determine if the
observed differences in our results were due
to other variables known to affect the RAS
by performing sensitivity analyses. All
statistical analyses were performed with the
statistical software package SPSS version
17.0 (SPSS, Chicago, IL) and were two-tailed
with a significance level of 0.05.

Results

Study Enrollment
Twenty-nine OSA subjects were enrolled in
the study and completed Study Day 1.
Twenty OSA subjects completed the study
and were included in the final analyses. Nine
subjects discontinued CPAP and were lost to
follow-up. Subjects who withdrew from the
study did not differ from subjects who
completed the study (see Table E1 in the
online supplement). One subject ingested
a single dose of the AngII receptor blocker
(ARB) candesartan the morning of the first
study day. This subject was studied in an
identical fashion post-CPAP therapy,
including ingestion of candesartan, to allow
for comparison of pre–post CPAP results.
This subject was included in the primary
analyses, but excluded in a sensitivity
analysis.

Subject Characteristics
Subject characteristics are presented in
Table 1. Twenty newly diagnosed OSA
subjects with nocturnal hypoxemia
were recruited (15 men and 5 women
[1 premenopausal, 4 postmenopausal]; age =
50 [29–68] years). All had BP , 140/90
mm Hg, and none were taking medications
that act on the RAS at the time of kidney
function assessment. Seven subjects were
on antihypertensive medications, which
included calcium-channel blocker (n = 3),
angiotensin-converting enzyme (ACE)
inhibitor (n = 2), angiotensin receptor
blocker (n = 2), b-blocker (n = 1). One
subject was on dual therapy (calcium-
channel blocker and ACE inhibitor). ACE
inhibitors, angiotensin receptor blockers,
and b-blockers were switched to the
calcium-channel blocker amlodipine
to control BP 2 weeks prior to each

assessment of the RAS and kidney function,
as this class of medication has been shown
to have minimal interference with the
RAS (33). All subjects were nondiabetic
nonsmokers with normal kidney function
and in high-salt balance.

CPAP Therapy
All subjects were adherent with CPAP
therapy, which corrected their OSA and
nocturnal hypoxemia (Tables 1 and E2).
Duration to acclimatize to CPAP was 142
[68–261] days. During the 4-week period
prior to reassessment of their renal
function, CPAP was used on 92 6 2% of
nights (81 6 4% with usage .4 h/night),
with an average nightly usage of 6.4 6
0.3 h/night, indicating very good CPAP
adherence. Sixteen subjects completed
the study on auto-CPAP, and four
subjects were converted to fixed
CPAP to optimize therapy. Final CPAP
prescriptions are reported in the
online supplement. All subjects met
acceptable criteria for correction of OSA
(RDI ,10/h), and nocturnal hypoxemia
was corrected in all but three subjects
(duration SaO2

, 90% for ,12%
monitoring time). In those three subjects,
the post-CPAP mean SaO2

was .90%.
A sensitivity analysis excluding these three
subjects showed similar results.

Pre- versus Post-CPAP Therapy

Baseline characteristics. Changes in baseline
characteristics are reported in Table 1.
Fasting blood glucose, Vitamin D, and
urine sodium and potassium excretion did
not change post-CPAP therapy. Body
mass index (BMI) was higher post-CPAP
therapy.

CPAP treatment improved baseline
renal hemodynamics (Figure 1), manifested
by reductions in GFR, FF, and RVR, and
led to a borderline increase in RPF.
Reductions in urinary total protein
excretion and BP indices were also
observed. There were no changes in
circulating levels of PRA or AngII post-
CPAP. However, there was a significant
reduction in serum aldosterone levels
post-CPAP therapy (Figure 2).

Responses to angiotensin II. Responses
to AngII pre- and post-CPAP therapy are
reported in Table 2. As anticipated, all
subjects demonstrated significant changes
in RPF, FF, RVR, all BP indices, PRA, and
aldosterone (all P-values , 0.001) in
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response to AngII challenge compared with
baseline values in both the pre- and post-
CPAP states. However, although pre-CPAP
subjects showed a significant decline in
GFR in response to 3 ng/kg/min AngII
(P = 0.02), GFR was maintained in
response to the same AngII dose post-
CPAP (P = 0.8, P = 0.03 vs. pre-CPAP
state) (Figure 3A). No differences in the
GFR response to 6 ng/kg/min AngII were
observed pre- and post-CPAP. Conversely,
although there was no difference in the RPF
response to the low dose of AngII pre-
versus post-CPAP (P = 0.2), there was
a significantly greater decrease in RPF in
response to the higher dose of AngII post-
CPAP (P = 0.02) (Figure 3B). There were
no changes in the FF or RVR responses
post-CPAP therapy.

Study subjects initially demonstrated
increased DBP sensitivity, manifested as
a greater DBP increase in response to AngII,
at 15 minutes post-CPAP therapy compared
with pre-CPAP (P = 0.02). The MAP
response followed a similar pattern. No
other differences in the BP responses to

AngII were observed. There were no
differences in PRA or aldosterone
sensitivity to AngII pre- versus post-CPAP
therapy.

Sensitivity analyses. Exclusion of the
subject who took candesartan did not alter
our results. Similarly, exclusion of the seven
subjects with controlled hypertension did
not alter our primary findings. Neither
exclusion of the five female subjects nor
removal of the three subjects with persistent
hypoxemia while using CPAP significantly
altered our findings.

Discussion

We examined RAS activity in humans with
OSA before and after CPAP therapy. To our
knowledge, this is first study in which the
effect of CPAP treatment on the renal
hemodynamic, circulating RAS, and BP
responses to an AngII challenge, a well-
accepted indirect measure of RAS activity
(23, 25, 30, 31), has been examined. Our
primary findings are that treatment of OSA

with CPAP resulted in (1) reduced filtration
fraction, (2) decreased baseline aldosterone
levels, and (3) reduced renal RAS activity
as reflected by the greater decrease in RPF
in response to AngII post-CPAP therapy.
These findings suggest not only that
treatment of OSA with CPAP reduce
filtration fraction, a marker of renal and
cardiovascular risk (34–37), but that the
mechanism by which this occurs is through
down-regulation of renal RAS activity.
These findings support a role for the RAS
in mediating OSA-induced hypertension
and kidney disease in humans. CPAP
down-regulates RAS activity, which may be
a contributory mechanism by which CPAP
therapy decreases BP and maintains
normotension in OSA patients (38).

We and others have shown that OSA is
associated with altered RAS activity (16–19,
22, 26, 39–41). Several studies have
examined the effect of CPAP therapy on
components of the RAS. Follenius and
colleagues reported that 1 night of CPAP
therapy increased PRA and aldosterone
levels (40), whereas Saarelainen and
colleagues reported a decrease in plasma
aldosterone but no change in renin after
3 months of CPAP treatment in 11 male
hypertensive subjects without other
comorbidities (39). In a randomized trial of
101 male OSA subjects randomized to
therapeutic or sham CPAP therapy, there
were no differences in renin levels post-
CPAP therapy but equivalent increases in
aldosterone levels after 1 month (41).
Moller and colleagues administered CPAP
to 13 OSA patients for 14 months and
found no statistically significant reductions
in renin or AngII (18). However, CPAP
therapy reduced BP, and the reduction in
BP was correlated with a decrease in both
plasma renin and AngII concentrations
(18). Svatikova and colleagues compared
aldosterone and renin levels in 21 OSA
patients without coexisting cardiovascular
disease to those of similarly obese healthy
control subjects (21). The authors found
that neither OSA nor CPAP treatment
acutely affected overnight plasma
aldosterone or renin levels (21). Similarly
to Saarelainen and colleagues, we found
a reduction in plasma aldosterone
but no change in PRA or AngII. The
discrepancies in findings likely reflect
differences in baseline hypertension, use of
antihypertensive medications, duration and
adherence to CPAP therapy, presence of
comorbidities, and severity of OSA and/or

Table 1. Baseline Characteristics (N = 20)

Parameter Pre-CPAP Post-CPAP P Value

Age, yr 50 6 2 – –
Gender, n (%) male 15 (75) – –
Race, n (%) white 14 (60) – –
BMI, kg/m2 33 6 1 34 6 1 0.033
Urinary Na1, mmol/d 375 6 24 353 6 27 0.083
Urinary K1, mmol/d 86 6 3 87 6 5 1.0
Fasting glucose, mmol/L 4.8 6 0.1 4.9 6 0.1 0.6
259OH Vitamin D, nmol/L 65 6 5 70 6 5 0.2
Heart rate, beats/min 67 6 2 64 6 2 0.2
RDI, h21 41.7 6 4.2 3.8 6 0.6 ,0.001
SaO2

, 90, % monitoring time 35.8 6 5.1 5.6 6 2.0 ,0.001
Mean SaO2

, % 90.0 6 0.5 92.5 6 0.3 ,0.001
Minimum SaO2

, % 72.3 6 1.2 85.8 6 0.8 ,0.001
GFR, ml/min* 124 6 8 110 6 6 0.014
RPF, ml/min*† 692 6 36 749 6 40 0.059
FF, %*† 18.9 6 1.6 15.3 6 1.0 0.004
RVR, mm Hg/ml/min*† 0.14 6 0.01 0.12 6 0.01 0.003
UTPE, mg/d‡ 61 (39–341) 56 (22–204) 0.003
SBP, mm Hg* 127 6 3 121 6 2 0.026
DBP, mm Hg* 78 6 2 73 6 2 0.002
MAP, mm Hg* 94 6 2 89 6 2 0.002
PRA, ng/L/s‡ 0.24 (0.06–6.03) 0.22 (0.01–4.33) 0.6
AngII, ng/L‡ 18 (12–48) 16 (12–73) 1.0
Aldosterone, pmol/L 149 6 18 109 6 10 0.003

Definition of abbreviations: AngII = angiotensin II; BMI = body mass index; CPAP = continuous
positive airway pressure; DBP = diastolic blood pressure; GFR = glomerular filtration rate; FF =
filtration fraction; MAP = mean arterial pressure; PRA = plasma renin activity; RDI = respiratory
disturbance index; RPF = renal plasma flow; RVR = renal vascular resistance; SaO2

= oxyhemoglobin
saturation; SBP = systolic blood pressure; UTPE = urinary total protein excretion.
*Mean of two readings.
†N = 19.
‡Median (range).
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hypoxemia. These studies are limited
because they included only male subjects
and did not quantify or examine the
hypoxemia profile of their subjects, and,
most important, a majority did not control
for salt intake, kidney function, or other
factors known to affect the RAS. Hence, the
mechanistic relationship between OSA and
the RAS in patients without comorbidities
remains unclear. Our study addresses
several of the limitations of these previous
studies. We included women and subjects
with significant nocturnal hypoxemia
and controlled for factors known to affect
the RAS.

To our knowledge, researchers in only
one previous study have examined the effect
of CPAP on kidney function. Kinebuchi
and colleagues reported that OSA patients
have increased FF and reduced RPF
compared to controls (22). Most importantly,
and consistent with our findings, treatment

of OSA with CPAP therapy for 1 week
resulted in a significant reduction in FF,
which was mediated by an increase in RPF
(22). Although the mechanism for the
decrease in FF was not evaluated,
a sensitivity analysis showed that it was
limited to patients who were not receiving
RAS blockade (22), thereby implicating
a role for the RAS. We confirm and extend
the findings of Kinebuchi and colleagues by
demonstrating that the decrease in filtration
fraction associated with CPAP is mediated
through a RAS-dependent mechanism, as
indicated by the increased RPF sensitivity
to AngII. The discordance observed
between the GFR and RPF responses has
been reported in previous studies (31, 42,
43). It likely reflects differences between
the various renal vascular beds. AngII is
a powerful endogenous vasoconstrictor
with selective action on the renal blood
supply (9). Consequently, even small

changes in concentration lead to renal
vasoconstriction and a decrease in RPF
(44), though the impact of AngII on GFR
is far less predictable. Furthermore, the
enhanced renovascular response to AngII
in the post-CPAP period compared with
the pre-CPAP period was not reflected in
the BP, plasma renin activity, or AngII
responses to AngII challenge, which were
not different between the study days,
thus suggesting only a difference in RAS
activation at the level of the kidney.

Although RAS blockade has been
shown to be more effective than CPAP in
reducing BP in hypertensive OSA subjects, it
remains unclear which treatment has the
most value in the kidney function of OSA
patients without hypertension or in OSA
patients with CKD (45). However, RAS
blockade does not mitigate the daytime
symptoms of OSA, whereas CPAP therapy
effectively improves cognitive function,
daytime sleepiness, and quality of life (46).
In patients for whom CPAP treatment is
not feasible, consideration should be given
to prescribing a medication that blocks RAS
activity (16, 45). Combined CPAP and RAS
blockade therapy may be more effective
(45) and is an important area of future study.

There is growing recognition of the
consequences of increased aldosterone
secretion and its contributions to
hypertension (16, 17, 47–50). Treatment
with aldosterone antagonists reduces
morbidity, mortality, and hospitalizations
in patients with hypertension and systolic
heart failure (47–49). Administration of the
aldosterone antagonist spironolactone for
8 weeks has been reported to attenuate
OSA severity by z50% in subjects with
treatment-resistant hypertension (16). The
results of our present study suggest that
CPAP therapy is effective in lowering
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circulating aldosterone levels. Aldosterone
excess has been hypothesized to contribute
to OSA through increased sodium and
water retention, thus promoting tissue
edema localized to the neck in the supine
position and leading to airway obstruction
and worsening of OSA (50).

Our study has several strengths. We
utilized a well-accepted measure of RAS
activity (23, 25, 30, 31) and controlled for
factors known to affect the RAS, such as salt
intake, exogenous hormone use, and
menstrual status. All subjects had newly
diagnosed and untreated moderate to
severe OSA with marked nocturnal
hypoxemia, suggesting that any of the
effects of OSA and CPAP therapy on the
RAS should have been evident in our study
population. We included only subjects with
BP ,140/90 mm Hg who had no other
coexisting diseases and were not taking
medications known to alter RAS activity.
The pre–post CPAP study design allowed

us to comment on causality and to assess
the effect of CPAP on RAS activity
independent of age, sex, obesity, and other
residual confounders, including salt
balance, as all subjects were in a high-salt
state, a state of maximal RAS suppression
(25). The mild increase in BMI observed
post-CPAP in OSA patients has been
reported previously (51–53), and, although
this may have been due to fluid retention, it
is unlikely to have affected the RAS, owing
to similarities in salt balance. Increased
BMI has been associated with increased
RAS activity in humans (54); thus, it is
possible that the decrease in RAS activity
associated with CPAP in our study may
actually have been an underestimate.
Further, we included women as well as
subjects with controlled hypertension,
thereby increasing the generalizability and
clinical implications of our results.

We did not examine the specificity of
the responses to AngII. However, in animal

studies, researchers who have examined
the vasoconstrictor effect of AngII and the
non-AngII vasoconstrictor norepinephrine
have demonstrated that the renal
vasculature’s responsiveness to AngII is
specific (55). Further, in healthy humans,
norepinephrine and AngII have been
demonstrated to have different effects on
control of the renal blood supply (56).
Hence, we do not believe that we would have
observed similar changes with the utilization
of a non-AngII vasoconstrictor agent.

Notwithstanding these strengths, our
study has limitations. First, our study
sample was limited to OSA subjects
without comorbidities, thus limiting the
generalizability of our study results.
However, by studying a healthier population
of OSA subjects, we were able to examine
the impact of CPAP therapy on renal
hemodynamics, BP, and circulating RAS
components without confounding factors.
Further, by design, we included only
subjects with both moderate to severe OSA
and significant nocturnal hypoxemia.
Consequently, it remains unclear whether it
was the correction of apnea or intermittent
hypoxemia that was responsible for our
findings. Certainly, the results of our
sensitivity analyses excluding the subjects
with partially corrected hypoxemia suggest
that treatment of intermittent hypoxemia
provides additional benefit with regard to
RAS activity. Second, our sample size was
relatively small, and our study did not
include control groups of non-OSA subjects,
hypertensive OSA subjects, or poorly
compliant OSA subjects, which may limit
the generalizability of the results. However,
we attempted to minimize the effect of
sample size, intraindividual variability
and comorbid disease by utilizing
a homogeneous study group and careful
prestudy design. Although we included no
control group, conditions during the
assessment of RAS and kidney function
were standardized tominimize any potential
effect of confounders. Specifically, subjects
were studied in the morning to account for
circadian variations in the RAS (57), in
a high-salt state to ensure maximal
suppression of the RAS (58), during
the same stage of the menstrual cycle
to eliminate estrogen-mediated RAS
differences (59), and all subjects were free
of medications known to alter RAS activity
and exogenous sex hormones. As such, it is
unlikely that the observed changes in RAS
activity and renal function were due to
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Figure 3. Renal hemodynamic responses to angiotensin II infusion pre- and post-CPAP therapy.
*P , 0.05 versus pre-CPAP. CPAP = continuous positive airway pressure; GFR = glomerular filtration
rate; RPF = renal plasma flow.
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factors other than treatment with CPAP.
Third, the duration that patients used
CPAP prior to reassessment of the RAS
varied because of differences in the ability
of individual patients to become
acclimated to it, which is well-recognized
in patients with OSA (60, 61). However, by
ensuring that all subjects were on effective
CPAP therapy for the same amount of
time (4 wk) before their RAS and kidney
function were reassessed, we were able
to standardize this intervention and

determine the effect of OSA treatment on
RAS activity. Fourth, we used an indirect
measure of RAS activity because it is not
feasible to measure vascular RAS activity
directly in humans, and thus it is possible
that the observations of this study may
simply reflect a generalized impairment in
endothelial function. Notwithstanding this
limitation, the response to AngII challenge is
a well-accepted and validated measure of
RAS activity (23, 25, 30, 31, 62). It has
been shown that the RPF response to

AngII challenge is highly correlated with
the RPF response to ACE inhibition in
human subjects (63–65). Although
indirect, this approach to testing the
hypothesis that the RPF response to
AngII challenge truly represents activation
of the intrarenal RAS is one of the
few methods available in humans.
Furthermore, the enhanced renovascular
response to AngII in the post-CPAP
period compared to the pre-CPAP period
was not reflected in the BP, plasma renin
activity, and AngII levels, which were not
different between the study days, thus
suggesting a difference in RAS activation
only at the level of the kidney. Fifth, we
used portable monitoring instead of
polysomnography both to diagnose OSA
and to evaluate patients’ response to CPAP
treatment. However, the use of portable
monitoring was appropriate for the
population we studied according to
current guidelines (8). Further, the
findings are objective and unequivocal.
Sixth, the duration of CPAP therapy may
have been insufficient to demonstrate its
full benefits with regard to RAS activity.
However, the treatment period we chose
has been shown to improve other
cardiovascular outcomes in previous
studies (66, 67).

In this community-based OSA
population, CPAP therapy was associated
with an improvement in renal
hemodynamics and a down-regulation of
renal RAS activity, suggesting a potential
therapeutic benefit of this therapy for kidney
function. Although it remains unclear
whether the effects of CPAP on the kidney
persist after treatment is discontinued, or if
timing of initiation or duration of use plays
a role, the association between CPAP
therapy and improvement in renal and RAS
parameters in our study merits further
attention. n
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treatment on plasma volume, aldosterone and 24-h blood pressure
in obstructive sleep apnoea. J Sleep Res 1996;5:181–185.

40. Follenius M, Krieger J, Krauth MO, Sforza F, Brandenberger G.
Obstructive sleep apnea treatment: peripheral and central effects on
plasma renin activity and aldosterone. Sleep 1991;14:211–217.

41. Meston N, Davies RJ, Mullins R, Jenkinson C, Wass JA, Stradling JR.
Endocrine effects of nasal continuous positive airway pressure in
male patients with obstructive sleep apnoea. J Intern Med 2003;254:
447–454.

42. Cherney DZ, Scholey JW, Nasrallah R, Dekker MG, Slorach C, Bradley
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