NEW RESEARCH

Journal of Clinical Sleep Medicine

http://dx.doi.org/10.5664/jcsm.3690

Effect of Obstructive Sleep Apnea Hypopnea Syndrome on Lipid Profile: A Meta-Regression Analysis

Rashid Nadeem, M.D.¹; Mukesh Singh, M.D.²; Mahwish Nida, MB.BS.³; Irfan Waheed, M.D.¹; Adnan Khan, M.D.¹; Saeed Ahmed, M.D.⁴; Jawed Naseem, M.Sc.⁵; Daniel Champeau, M.S.¹

¹Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL; ²Department of Cardiology, James A Lovell Federal Health Care Center, North Chicago, IL; ³Rematul lil Alameen Institute of Cardiology, Lahore, Pakistan; ⁴New York University, New York,NY; ⁵University of Karachi, Karachi, Pakistan

Background: Obstructive sleep apnea (OSA) is associated with obesity, metabolic syndrome, and dyslipidemia, which may be related to decrease androgen levels found in OSA patients. Dyslipidemia may contribute to atherosclerosis leading to increasing risk of heart disease.

Methods: Systematic review was conducted using PubMed and Cochrane library by utilizing different combinations of key words; sleep apnea, obstructive sleep apnea, serum lipids, dyslipidemia, cholesterol, total cholesterol, low density lipoprotein (LDL), high density lipoprotein (HDL), and triglyceride (TG). Inclusion criteria were: English articles, and studies with adult population in 2 groups of patients (patients with OSA and without OSA). A total 96 studies were reviewed for inclusion, with 25 studies pooled for analysis.

Results: Sixty-four studies were pooled for analysis; since some studies have more than one dataset, there were 107 datasets with 18,116 patients pooled for meta-analysis. All

O bstructive sleep apnea (OSA) is a common disorder affecting about 4% of middle-aged males and 2% of middle-aged women in the developed world and is a significant source of morbidity and mortality.^{1,2} OSA is characterized by recurrent episodes of upper airway collapses during sleep. These recurrent episodes of upper airway collapse usually are accompanied by oxyhemoglobin desaturation and terminated by brief arousals which result in marked sleep fragmentation and chronic excessive daytime sleepiness (EDS).^{1,2}

OSA has been increasingly linked to cardiovascular and cerebrovascular disease, and many studies have shown that OSA is associated with increased cardiovascular and cerebrovascular morbidity.³⁻⁹ OSA is associated with obesity and metabolic syndrome.¹⁰ Multiple studies addressing this interesting and complex issue are available where lipid profile was measured in subjects with OSA.¹¹⁻³⁵ We performed meta-analysis (MA) and meta-regression (MR) to specifically detect if OSA adversely affects degree of dyslipidemia; elevation of total cholesterol (TC), low density lipoprotein cholesterol (HDL).

studies measured serum lipids. Total cholesterol pooled standardized difference in means was 0.267 (p = 0.001). LDL cholesterol pooled standardized difference in means was 0.296 (p = 0.001). HDL cholesterol pooled standardized difference in means was -0.433 (p = 0.001). Triglyceride pooled standardized difference in means was 0.603 (p = 0.001). Meta-regression for age, BMI, and AHI showed that age has significant effect for TC, LDL, and HDL. BMI had significant effect for LDL and HDL, while AHI had significant effect for LDL and TG.

Conclusion: Patients with OSA appear to have increased dyslipidemia (high total cholesterol, LDL, TG, and low HDL). **Keywords:** obstructive sleep apnea, dyslipidemia, cholesterol, atherosclerosis, sleep disordered breathing

Citation: Nadeem R, Singh M, Nida M, Waheed I, Khan A, Ahmed S, Naseem J, Champeau D. Effect of obstructive sleep apnea hypopnea syndrome on lipid profile: a meta-regression analysis. *J Clin Sleep Med* 2014;10(5):475-489.

BRIEF SUMMARY

Current Knowledge/Study Rationale: Dyslipidemia (increase in total cholesterol, LDL, and triglycerides, and decrease in HDL) and obstructive sleep apnea (OSA) are risk factors for cardiovascular and cerebrovascular disorders. This meta-regression analysis estimates the adverse effect of OSA on dyslipidemia as many studies have measured dyslipidemia in subjects with OSA.

Study Impact: Study suggests dyslipidemia may be the mechanism of atherosclerosis in subjects with OSA. It also suggests OSA as potential target for treatment to improve dyslipidemia for prevention and treatment for cardiovascular and cerebrovascular disease.

METHODS

Data Source and Study Selection

Studies for review were found searching the PubMed, Cochrane, and EMBASE databases from January 01, 1968, to November 30th, 2013. Unpublished data from scientific meetings were not searched, since most abstract do not provide detail raw data needed for meta-analysis. Searches were Figure 1—Flow diagram for search and inclusion and exclusion of studies

conducted using the keywords; sleep apnea, obstructive sleep apnea, serum lipids, dyslipidemia, cholesterol, total cholesterol, low density lipoprotein, high density lipoprotein, and triglyceride. Each target outcome was also searched in its abbreviated forms (Chol T, HDL, LDL, and TG) to ensure that no relevant source was left out. Additionally, each target and its abbreviated forms were searched in combination with obstructive sleep apnea. Multiple authors individually searched for and scored manuscripts for inclusion. If manuscripts scored differently by 2 authors then it was reviewed by third author to finalize its inclusion.

Studies and Endpoint Definitions

Lipid profile includes total cholesterol (TC), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), and triglyceride (TG). Inclusion criteria defined for subsequent study selection were as follows: (1) the study must be in English, (2) studies with adult population only, (3) full-text manuscripts had to be available, (4) the study must have reported values for at least one of the outcome of interest, (5) the study must have included ≥ 2 separate groups with one being a group consisting of individuals with obstructive sleep apnea and the other consisting of individuals without obstructive sleep apnea, (6) OSA was defined as AHI $\geq 5/h$, (7) the study must have reported values in mean and standard deviation or median with range, and (8) patient number for all groups must have been reported.

Data Extraction and Statistical Analysis

Studies identified for inclusion then underwent data extraction. Data was extracted at a study level by a single author and then reviewed by a second author to ensure no errors were made. Levels of serum lipids were extracted from studies as mean with standard deviation. For studies with data reported in median and range, mean and standard deviation were calculated utilizing methods outlined by Hozo et al.³⁶

For studies in which OSA patients were compared with more than one group of control patients (e.g., obese and lean control), each set of data in the study was included in the meta-analysis as a separate data set. For example, Barcelo et al. compared lipid profiles of obese OSA patients and non-obese OSA to healthy controls.¹¹ We used standardized differences in means method for analyzing extracted data from studies.

Study selection, data extraction, and statistical analysis were all done in accordance to previously published methodology for meta-analyses. All statistical analysis was done using Comprehensive Meta-Analysis Version 2.

Heterogeneity was assessed by calculating the Cochrane Q statistic. Additionally I² statistics was also calculated to assess heterogeneity. An I² of 25% to 49% was considered to represent a low level of heterogeneity, 50% to 60% a moderate level, and 60% to 100% a high level. Standardized differences in mean were calculated using a random effects model for all outcomes with > 60% heterogeneity (I² > 60) and fixed effect model for I² < 60. Measurement unit of lipid profile was mmol/L. If any of these values were in mg/dL they were converted into mmol/L by dividing them by their molar weight. Publication bias analysis was done using four different methods to provide robust results. The methods included funnel plot analysis, Eggers reg intercept, Duval and Tweedie trim and fill, and Kendall tau with and without continuity correction.

RESULTS

The literature was ranked according to the hierarchy of evidence of Sackett et al.³⁷ A total of 96 studies were reviewed for inclusion. Sixty-four studies (with 107 datasets) met inclusion criteria and pooled for meta-analysis including total subjects 18,116 (controls [N = 10,145] and OSA subjects [N = 7,971]) for analysis (**Figure 1**).

Total Cholesterol

A total of 63 studies with 107 datasets including 18,111 subjects were pooled for TC. Standardized differences in means ranged from -2.05 to 5.0; pooled mean difference was calculated to be 0.267 (lower limit [LL] 0.146 to upper limit [UL] 0.389, p value = 0.001; see appendix following references, **Figure A1**).

LDL Cholesterol

For LDL, 50 studies with 82 datasets including 13,894 subjects were pooled. Standardized mean difference in LDL ranged from -1.679 to 3.243, pooled mean difference was calculated to be 0.296 (LL 0.156 to UL 0.436, p = 0.001; Figure A2)

		Age		BMI			AHI			
	slope	intercept	р	slope	intercept	р	slope	intercept	р	
TC	-0.02	1.37	0.001	-0.0052	0.23	0.12	-0.0005	0.04	0.65	
LDL	0.004	0.011	0.04	0.02	0.85	0.001	0.0006	0.22	0.67	
HDL	-0.01	0.39	0.001	0.02	-1.18	0.001	-0.005	-0.24	0.001	
TG	-0.002	0.55	0.34	-0.002	0.51	0.51	0.007	0.18	0.001	

Table 1-Meta Regression statistics for Lipids (TC, LDL, HDL, TG) for Age, BMI, and AHI

HDL Cholesterol

For HDL, 64 studies with 107 datasets including 18,116 subjects were pooled. Standardized mean difference ranged from -17.96 to 2.364. The pooled mean difference was calculated to be -0.433 (LL -0.604 to UL -0.262, p < 0.001; Figure A3).

Triglyceride

For TG, 62 studies with 104 datasets including 17,831 subjects were pooled and analyzed. Standardized mean difference ranged from -2.476 to 15.206, pooled mean difference was calculated to be 0.603 (LL 0.431 to UL 0.775, p < 0.001; **Figure A4**).

Meta-Regression to evaluate the effect of Age, BMI, and AHI on Lipid Levels

Data was also analyzed by meta-regression for effect of age, BMI, and AHI on all 4 variables of interest. Results of this analysis are given in **Table 1**. Age had significant effect for TC, LDL, and HDL. BMI had significant effect for LDL and HDL, while AHI had significant effect for HDL and TG (**Figures 2-4**). Only AHI had significant effect for TG.

Publication Bias Analysis

Publication bias analysis was done using four different methods to provide robust results. The methods included funnel plot analysis (**Figure 5**), Eggers reg intercept, Duval and Tweedie trim and fill, and Kendall tau with and without continuity correction. Overall, there was no significant publication bias in combined analysis. We also performed this analysis for individual lipid components and this analysis showed that there is low likelihood of publication bias for TC, TG, and LDL-c. HDL-c analysis showed likelihood of publication bias. We also performed precision plots (**Figure 6**).

Sensitivity Analysis

We also performed sensitivity analysis by removing one study at each step that did not change results, and it makes our results more robust (**Figures A5-A8**).

Figure 4-Meta-regression plots for AHI on TC, LDL, HDL, and TG

Figure 5—Publication bias estimation, Funnel plots for TC, LDL, HDL, and TG

DISCUSSION

There is strong positive associations between low-density lipoprotein (LDL) particles, which carry cholesterol, and the risk of coronary heart disease (CHD).^{38,39} Randomized trials have demonstrated that lowering LDL cholesterol with medications reduces the risk of cardiac death, nonfatal myocardial infarction (MI), ischemic stroke, and the need for revascular-ization procedures.⁴⁰⁻⁴²

Although a clear causal relationship of OSA and dyslipidemia is yet to be demonstrated, there is increasing evidence that chronic intermittent hypoxia, a major component of OSA, is independently associated and possibly the root cause of the dyslipidemia via the generation of stearoyl-coenzyme A desaturase-1 and reactive oxygen species, peroxidation of lipids, and sympathetic system dysfunction.⁴³ Intermittent hypoxia associated with sleep apnea promotes oxidative, and immune-inflammatory alterations.⁴⁴ Systemic inflammatory markers are higher in OSA patients than control subjects.⁴⁵ Cytokines, specifically IL-1, may alter LDL metabolism by human vascular endothelial cells and alter endothelial cell cholesterol metabolism. These changes in endothelial cell metabolism provide evidence supporting the critical role of cytokines in atherogenesis.⁴⁶

The present meta-analysis (MA) showed that there is an increase in levels of dyslipidemia in subjects with OSA including total cholesterol, low density lipoprotein, high density lipoprotein, and triglyceride. An obvious majority of studies^{11-26,31-35} showed this effect, while few did not.^{27,30,31} Ozol et al. found less dyslipidemia in patients with moderate OSA than controls, most likely because their controls have high insulin resistance measured by HOMA and higher insulin levels than moderate OSA patients.²⁷ Moreover they found a high degree of dyslipidemia in their mild and severe OSA groups, which suggest that confounding factors may have played a role in their subjects' lipid levels (hypertension, obesity, and frequency of metabolic syndrome) in their sample. Another study which did not show significant dyslipidemia in OSA was by Salord et al. Their small sample (OSA, n = 15 and control n = 12) had unique characteristics: all controls without OSA were significantly obese (BMI 46.9) undergoing bariatric surgery.³¹ Moreover their OSA patients were being treated with CPAP, which may explain the different findings of the study.

These findings highlight the adverse role of OSA as risk factor for cardiovascular diseases. These finding also suggest that increasing dyslipidemia may also be the mechanism of atherosclerosis in patients with OSA. It provides a potential target for treatment of dyslipidemia. Conceivably there is data suggesting that treatment of OSA by CPAP improves dyslipidemia, atherosclerosis and cardiovascular disease.⁴⁷

Meta-regression Analysis for Confounding Variables

These MR plots show that dyslipidemia (HDL and TG) is correlated by severity of OSA, higher the AHI the higher the dyslipidemia. Gasa et al.¹⁹ show that level of dyslipidemia correlates well with the severity of OSA; gradual worsening with worst numbers found in severe OSA group. Their regression analysis showed beta of 0.007 for TG. Likewise, Peled et al. found dyslipidemia in their sample as follow; control < mild OSA < severe OSA < moderate OSA³⁰. Their Beta coefficient was 0.332 for AHI, which suggests that this relationship is probably confounded by multiple factors including weight, BMI, and comorbid conditions.

These MR plots also showed the modest but significant effect of BMI on dyslipidemia (LDL and HDL). This is in agreement with many other studies. Sharma et al. showed that BMI had an independent association with OSA.

This finding of heightened dyslipidemia in patients with obstructive sleep apnea suggest that treatment of sleep apnea should improve this risk factors for heart disease directly or indirectly by affecting other confounding factors (obesity, hypertension, diabetes mellitus, and metabolic syndrome), as CPAP treatment for sleep apnea has been shown to positively affect management of these confounding variables.⁴⁸⁻⁵¹

Several limitations of this meta-analysis should be emphasized. Available literature is low level evidence. Many of the relevant studies regarding the association between OSA and level of dyslipidemia were cross-sectional in nature, so the temporal relationships between these two factors were unclear. Funnel plots suggest heterogeneity and publication bias (**Figure 5**). We could not perform the meta-regression for other confounding factors—sleepiness, presence of hypertension, or measures of visceral adipose tissue—since we have data on these variables only in few studies. These factors have been found to be associated with elevated dyslipidemia.

One weakness of our meta-analysis is that all papers written in languages other than English were excluded. Another weakness is that studies not yet published were also excluded (publication bias).

In summary, there appears to be some evidence indicating higher degree of dyslipidemia in patients with OSA, these levels may be correlated to the level of severity of disease as suggested by meta-regression plot for AHI. These findings may explain, at least in part, the mechanism for atherosclerosis leading to cardiovascular disorder in patients with OSA and the common occurrence of systemic complications among these patients. Future studies are needed to further explore the correlation between the level of dyslipidemia and severity of OSA and to determine whether levels of dyslipidemia can be modified by therapeutic interventions in these patients.

REFERENCES

- Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993;32:1230-5.
- Guilleminault C, Tilkian A, Dement WC. The sleep apnea syndromes. Annu Rev Med 1976;27:465-84.
- Nieto FJ, Young TB, Lind BK, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 2000; 283:1829-36.
- Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000;342:1378-84.
- Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. *Am J Respir Crit Care Med* 2001;163:19-25.
- Peker Y, Hedner J, Norum J, Kraiczi H, Carlson J. Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med 2002;166:159-65.
- Imadojemu VA, Gleeson K, Gray KS, Sinoway LI, Leuenberger UA. Obstructive sleep apnea during sleep is associated with peripheral vasoconstriction. *Am J Respir Crit Care Med* 2002;165:61-6.

Effect of Obstructive Sleep Apnea on Lipids

- Sajkov D, Wang T, Saunders NA, Bune AJ, McEvoy RD. Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. *Am J Respir Crit Care Med* 2002;166:152-8.
- Amin RS, Kimball TR, Bean JA, et al. Left ventricular hypertrophy and abnormal ventricular geometry in children and adolescents with obstructive sleep apnea. *Am J Respir Crit Care Med* 2002;165:1395-9.
- Rebuffè-Scrive M, Mårin P, Björntorp P. Effect of testosterone on abdominal adipose tissue in men. Int J Obes 1991;15:791-5.
- Barceló A, Barbé F, Llompart E, et al. Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. *Am J Med* 2004;117:118-21
- Barceló A, Barbé F, de la Peña M, et al. Insulin resistance and daytime sleepiness in patients with sleep apnoea. *Thorax* 2008;63:946-50.
- Bhushan B, Guleria R, Misra A, Pandey RM, Luthra K, Vikram NK. Obstructive sleep apnoea correlates with C-reactive protein in obese Asian Indians. *Nutr Metab Cardiovasc Dis* 2009;19:184-9.
- Can M, Açikgöz S, Mungan G, et al. Serum cardiovascular risk factors in obstructive sleep apnea. Chest 2006;129:233-7.
- Cofta S, Wysocka E, Michalak S, Piorunek T, Batura-Gabryel H, Torlinski L. Endothelium-derived markers and antioxidant status in the blood of obstructive sleep apnea males. *Eur J Med Res* 2009;14 Suppl 4:49-52.
- Coughlin SR, Mawdsley L, Mugarza JA, Calverley PM, Wilding JP. Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. *Eur Heart J* 2004;25:735-41.
- Drager LF, Bortolotto LA, Maki-Nunes C, et al. The incremental role of obstructive sleep apnoea on markers of atherosclerosis in patients with metabolic syndrome. *Atherosclerosis* 2010;208:490-5
- Gambineri A, Pelusi C, Pasquali R. Testosterone levels in obese male patients with obstructive sleep apnea syndrome: relation to oxygen desaturation, body weight, fat distribution and the metabolic parameters. *J Endocrinol Invest* 2003;26:493-8.
- Gasa M, Salord N, Fortuna AM, et al. Obstructive sleep apnoea and metabolic impairment in severe obesity. *Eur Respir J* 2011;38:1089-97
- Gruber A, Horwood F, Sithole J, Ali NJ, Idris I. Obstructive sleep apnoea is independently associated with the metabolic syndrome but not insulin resistance state. *Cardiovasc Diabetol* 2006;5:22.
- Guill S, Hargens T, Nickols-Richardson S, et al. Early evidence of increased risk for metabolic syndrome in young men with latent obstructive sleep apnea. *Metab Syndr Relat Disord* 2010;8:33-8
- lesato K, Tatsumi K, Saibara T, et al. Decreased lipoprotein lipase in obstructive sleep apnea syndrome. *Circ J* 2007;71:1293-8.
- Ip MS, Lam KS, Ho C, Tsang KW, Lam W. Serum leptin and vascular risk factors in obstructive sleep apnea. *Chest* 2000;118:580-6
- Kono M, Tatsumi K, Saibara T, et al. Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome. *Chest* 2007;131:1387-92.
- Lin QC, Zhang XB, Chen GP, Huang DY, Din HB, Tang AZ. Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome in nonobese adults. *Sleep Breath* 2012;16:571-8.
- McArdle N, Hillman D, Beilin L, Watts G. Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. *Am J Respir Crit Care Med* 2007;175:190-5.
- Monneret D, Borel JC, Pepin JL, et al. Pleiotropic role of IGF-I in obesity hypoventilation syndrome. Growth Horm IGF Res 2010;20:127-33
- Ozol D, Turkay C, Kasapoglu B, Karamanlı H, Yıldırım Z. Relationship between components of metabolic syndrome and polysomnographic findings in obstructive sleep apnea. *Metab Syndr Relat Disord* 2011;9:13-8
- Panaree B, Chantana M, Wasana S, Chairat N. Effects of obstructive sleep apnea on serum brain-derived neurotrophic factor protein, cortisol, and lipid levels. Sleep Breath 2011;15:649-56.
- Peled N, Kassirer M, Shitrit D, et al. The association of OSA with insulin resistance, inflammation and metabolic syndrome. *Respir Med* 2007;101:1696-701
- Salord N, Mayos M, Miralda R, Perez A. Respiratory sleep disturbances in patients undergoing gastric bypass surgery and their relation to metabolic syndrome. Obes Surg 2009;19:74-9
- Sánchez-de-la-Torre M, Pierola J, Vidal C, et al. Non-synonymous polymorphism in the neuropeptide S precursor gene and sleep apnea *Sleep Breath* 2011;15:403-8.
- Sharma SK, Kumpawat S, Goel A, Banga A, Ramakrishnan L, Chaturvedi P. Obesity, and not obstructive sleep apnea, is responsible for metabolic abnormalities in a cohort with sleep-disordered breathing Sleep Med 2007;8:12-7.

- Tan KC, Chow WS, Lam JC, et al. MS HDL dysfunction in obstructive sleep apnea. Atherosclerosis 2006;184:377-82
- Trakada G, Steiropoulos P, Nena E, et al. Plasma visfatin levels in severe obstructive sleep apnea-hypopnea syndrome Sleep Breath 2009;13:349-55
- Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Method 2005;5:13.
- Sackett DL, Straus SE, Richardson WS, Rosenberg W, Haynes RB. Evidencebased medicine – How to practice and teach EBM, 2nd ed. Oxford: Churchill Livingstone, 2000:173-75.
- Prospective Studies Collaboration. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. *Lancet* 2007;370:1829-39.
- Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009;302:1993-2000.
- Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. *Lancet* 2010;376:1670-81.
- Emberson JR, Ng LL, Armitage J, Bowman L, Parish S, Collins R. N-terminal pro-B-type natriuretic peptide, vascular disease risk, and cholesterol reduction among 20,536 patients in the MRC/BHF heart protection study. J Am Coll Cardiol 2007;49:311-9.
- 42. Cleland JGF, McMurray JJV, Kjekshus J, et al.; CORONA Study Group. Plasma concentration of amino-terminal pro-brain natriuretic peptide in chronic heart failure: prediction of cardiovascular events and interaction with the effects of rosuvastatin: a report from CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure). J Am Coll Cardiol 2009;54:1850-9.
- Adedayo AM, Olafiranye O, Smith D, et al. Obstructive sleep apnea and dyslipidemia: evidence and underlying mechanism. Sleep Breath 2014;18:13-8.
- Arnaud C, Dematteis M, Pepin JL, Baguet JP, Lévy P. Semin Immunopathol 2009;31:113-25.
- Nadeem R, Molnar J, Madbouly EM, et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med 2013;9:1003-12
- Klein RL, Ascencao JL, Mironova M, Huang Y, Lopes-Virella MF. Effect of inflammatory cytokines on the metabolism of low-density lipoproteins by human vascular endothelial cells. *Metabolism* 2001;50:99-106
- Börgel J, Sanner BM, Bittlinsky A, et al. Obstructive sleep apnoea and its therapy influence high-density lipoprotein cholesterol serum levels. *Eur Respir J* 2006;27:121-7
- Quan SF, Budhiraja R, Clarke DP, et al. Impact of treatment with continuous positive airway pressure (CPAP) on weight in obstructive sleep apnea. J Clin Sleep Med 2013;9:989-93.
- 49. Fava C, Dorigoni S, Dalle Vedove F, et al. Effect of continuous positive airway pressure (CPAP) on blood pressure in patients with obstructive sleep apnea/ hypopnea. A systematic review and meta-analysis. *Chest* 2013 Sep 26. [Epub ahead of print].
- Weinstock TG, Wang X, Rueschman M, et al. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep 2012;35:617-25B.
- Mota PC, Drummond M, Winck JC, Santos AC, Almeida J, Marques JA. APAP impact on metabolic syndrome in obstructive sleep apnea patients. *Sleep Breath* 2011;15:665-72.

ACKNOWLEDGMENTS

The authors express our sincere appreciation to Librarian, Ms. Anne Baker for assistance in acquisition of articles.

SUBMISSION & CORRESPONDENCE INFORMATION

Submitted for publication May, 2013 Submitted in final revised form December, 2013 Accepted for publication January, 2014

Address correspondence to: Rashid Nadeem, M.D., Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, 60064; Tel: (847) 578-3000; Fax: (866) 239-8451; E-mail: Nadeem.dr@gmail.com

DISCLOSURE STATEMENT

This was not an industry supported study. The authors have indicated no financial conflicts of interest.

APPENDIX

Figure A1—Total cholesterol, standardized difference in means, OSA versus controls

Std diff in means and 95% Cl Study name Statistics for each study Std diff in means Standard error Lower Upper limit Variance Z-Valu p-Value Assoumou 2012 Balachandaran 2012 Barcelo 2004 A Barcelo 2004 B Barcelo 2008 B Barcelo 2008 B Barcelo 2010 Basoglu 2011 Bhushan 2009 Bhushan 2011 A Bhushan 2013 -13.305 1.034 -0.945 -0.945 -0.945 -0.945 -0.945 1.554 0.377 1.749 0.639 -1.950 7.050 0.290 0.119 1.288 1.081 1.837 -0.495 0.499 -0.717 -2.506 -1.000 0.243 -0.251 -0.299 -0.024 -0.095 -0.429 0.375 0.072 0.223 0.212 -0.358 2.378 0.056 0.038 0.424 0.075 0.235 0.313 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.127 0.322 0.184 0.337 0.195 0.320 0.329 0.006 0.055 0.098 0.100 0.089 0.011 0.058 0.037 0.016 0.110 0.034 0.114 0.038 0.103 0.108 -1.1472 -0.217 -0.2864 -0.219 -0.679 -0.679 -0.679 -0.679 -0.670 -0.670 -0.748 -0.748 -0.726 -0.282 -0.853 0.703 0.363 0.321 0.560 0.490 -0.224 0.848 0.443 0.473 0.862 0.002 3.040 0.433 0.666 1.069 0.976 1.277 0.252 0.431 0.142 -0.178 0.245 0.553 0.390 0.424 0.390 0.424 0.000 0.301 0.423 0.345 0.935 0.751 0.000 0.120 0.706 0.080 0.523 0.051 0.000 0.772 0.905 0.198 Bhushan 2011 B Blomster 2013 Can 2006 Cao 2012 Chihara 2012 A Chihara 2012 B 0.103 0.113 0.030 0.031 0.198 0.280 0.066 0.621 0.618 Cholidou 2013 A Cholidou 2013 B 0.347 0.618 -0.085 0.087 -0.082 -0.815 -0.398 -0.059 0.321 Chung 2011 A Chung 2011 B 0.172 0.113 0.325 0.328 0.313 0.013 0.106 0.108 0.474 0.012 0.225 0.849 Cintra 2011 Cofta 2013 A Cofta 2013 B Cofta 2013 C -1.213 -0.190 0.000 -0.207 0.701 1.370 1.486 0.775 0.098 0.040 0.058 0.134 Corta 2013 C coughlin2004 Czerniawska 2008 Davies 1994 Drager 2010 A Drager 2010 B Garcia-rio 2013 A 0.000 0.199 1.000 0.242 0.367 0.231 0.203 0.173 0.836 0.483 0.171 -0.050 0.257 0.054 0.041 0.030 0.317 0.302 0.137 0.439 0.344 -0.028 -0.218 5.000 0.173 0.365 0.268 0.673 1.824 -0.078 -0.815 7.431 0.068 0.938 0.415 0.000 Garcia-rio 2013 B Gambineri 2003 0.036 0.714 0.687 0.307 6.319 1.740 0.577 0.575 0.322 0.071 1.260 0.332 0.074 1.260 0.332 0.074 1.260 0.332 0.074 1.260 0.332 0.074 1.260 0.332 0.074 1.260 0.332 0.353 0.322 0.353 0.352 0.354 0.352 0.354 0.352 0.354 0.354 0.352 0.354 Gorzewska 2013 Grassi 2010 A Grassi 2010 A Gruber 2006 Guasti 2011 1.000 -0.500 -0.815 2.648 -2.187 -2.002 3.270 1.611 1.576 2.949 1.494 -0.668 -0.688 -0.668 -0.688 -0.698 -0.698 -0.649 -0.908 -2.482 2.4668 7.350 0.297 1.415 2.482 2.266 1.240 2.482 2.266 1.240 2.482 2.265 1.240 1.258 5.836 -0.156 0.038 0.000 -1.652 -1.288 lesato 2007 Ip 2000 Kraiczi 2000 Lam 2000 Lam 2000 Lavie 2001 A Lavie 2001 A Lavie 2001 B Lin 2013 A Luyster 2012 A Luyster 2012 A Luyster 2012 A Luyster 2012 A Makino 2009 A Makino 2009 A Marin 2005 A Marin 2005 C Ma 0.594 0.420 0.728 0.385 0.351 -0.098 -0.146 -0.105 0.675 -0.224 -0.224 -0.227 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.277 -0.276 -0.277 -0.277 -0.276 -0.277 -0.277 -0.277 -0.276 -0.277 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.276 -0.277 -0.276 -0.276 -0.276 -0.276 -0.277 -0.276 -0.276 -0.276 -0.277 -0.276 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.276 -0.277 -0.277 -0.276 -0.277 -Pierola 2007 Roche 2009 A Roche 2009 B Rusu 2012 0.281 0.249 0.256 0.249 0.256 0.062 0.066 0.062 0.066 0.105 -0.125 0.000 -0.125 0.000 -0.115 3.384 2.826 3.446 1.908 2.387 1.956 -0.278 1.483 -0.032 Ryan 2006 A Ryan 2006 B -0.613 -0.502 -0.613 -0.502 -0.750 2.595 2.655 1.298 1.720 1.346 -1.041 0.954 -0.252 -0.502 0.000 -0.502 0.000 -0.356 8.405 7.678 8.538 6.126 7.006 6.283 -0.715 5.494 -0.281 0.616 Ryan 2006 B Ryan 2007 A Ryan 2007 B Ryan 2007 C Sahin 2011 A Sahin 2011 C Sahin 2011 C Sahin 2011 C 0.616 1.000 0.722 0.324 0.324 0.403 0.368 0.404 0.311 0.162 0.000 0.000 0.136 0.163 0.000 0.097 0.000 Sahin 2011 E 0.341 0.311 0.116 0.000 Sahin 2011 F 0.097 0.000 Salord 2009 0.38 Schulz 2005 Sharabi 2003 0.270 0.073 0.000 0.013 0.779 0.349 0.644 0.179 sharma 2006 A sharma 2006 B 0.225 0.051 -0.093 0.194 1.549 2.807 0.121 0.005 0.208 0.072 0.229 0.053 0.142 0.188 0.078 -0.099 -0.031 0.153 1.260 1.797 3.912 Tan 2006 Tan 2012 0.020 0.338 0.035 Togeiro 2013 A 0.006 0.000 Togeiro 2013 B Tokuda 2008 A Tokuda 2008 B Tsioufis 2007 0.535 -0.377 -0.348 0.570 0.366 -1.045 -0.965 0.168 6.200 -1.106 -1.104 2.775 0.086 0.341 0.007 0.116 0.000 0.269 0.270 0.315 0.206 0.356 0.357 0.354 0.256 0.278 0.413 0.367 0.310 0.372 0.074 0.071 0.317 0.280 0.062 0.099 0.042 0.006 1.000 Utriainein 2013 A Utriainein 2013 B Utriainein 2013 C 0.000 0.187 0.000 0.125 0.307 -1.076 -1.669 0.691 -2.051 -0.274 -0.240 2.204 1.421 0.267 0.127 -0.698 -0.513 -0.693 -0.377 -0.237 -1.884 -2.387 0.083 -2.781 -0.420 -0.380 1.583 0.873 0.146 0.000 0.523 0.000 0.488 1.107 -2.606 -4.551 2.227 -5.507 -3.687 -3.364 6.955 5.079 4.314 0.127 0.125 0.601 1.000 Utriainein 2013 C Varol 2010 A Varol 2010 B Vatansever 2011 A Vatansever 2011 B Wysocka 2013 A Wysocka 2013 B Yeboah 2011 B Zamarron 2008 A 0.066 0.077 0.170 0.134 0.096 0.139 0.006 0.005 0.005 0.100 0.078 0.004 0.626 0.268 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 narron 2008 A narron 2008 B 0.00 -2.00 2.00 Favors Controls Favors OSA

Figure A2—LDL cholesterol, standardized difference in means, OSA versus controls

tudy name			Statistics fo	r each stu	idy			Std diff in means and 95% Cl
	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	
Assoumou 2012	1.400	0.077	0.006	1.249	1.551	18.150	0.000	
Barccelo 2004 A	0.026	0.312	0.097	-0.585	0.638	0.085	0.932	
Barccelo 2004 B	-0.125	0.315	0.099	-0.742	0.492	-0.397	0.691	│ │ ─╉─_ │
lasoglu 2011	0.883	0.251	0.063	0.392	1.374	3.524	0.000	
Cao 2012	0.175	0.195	0.038	-0.207	0.557	0.899	0.369	
Cholidou 2013 A	0.269	0.320	0.102	-0.359	0.896	0.839	0.401	
LINOIIDOU 2013 B	0.467	0.333	0.111	-0.186	1.121	1.402	0.161	
Lnung 2011 A	-0.173	0.172	0.030	-0.511	0.165	-1.003	0.316	
Cintro 2011 D	-0.168	0.176	0.031	-0.512	0.170	-0.959	0.338	
Cofta 2013 A	-0.661	0.114	0.103	-0.213	-0.032	-2 059	0.925	
Cofta 2013 B	1 094	0.345	0 121	0 411	1 776	3 141	0.002	
Cofta 2013 C	-0 165	0.313	0.098	-0 778	0 449	-0.526	0.599	
Zerniawska 2008	-0.092	0.242	0.058	-0.566	0.382	-0.378	0 705	
Coughlin 2004	0.669	0.204	0.042	0.268	1.070	3.271	0.001	
Can 2006	2.772	0.362	0.131	2.063	3.480	7.667	0.000	
Davies 1994	0.372	0.368	0.136	-0.350	1.094	1.011	0.312	
Drager 2010	0.179	0.203	0.041	-0.218	0.576	0.884	0.376	
Garcia-rio 2013 A	0.088	0.173	0.030	-0.251	0.428	0.510	0.610	
Garcia-rio 2013 B	0.267	0.188	0.035	-0.102	0.636	1.419	0.156	
Guasti 2011	-1.078	0.418	0.175	-1.898	-0.258	-2.577	0.010	
Gruber 2006	0.000	0.225	0.051	-0.441	0.441	0.000	1.000	
P 2000	0.372	0.260	0.068	-0.138	0.883	1.429	0.153	▏
Craiczi 2000	0.723	0.462	0.213	-0.182	1.627	1.566	0.117	
am 2006	0.125	0.130	0.017	-0.129	0.379	0.964	0.335	
.am 2009	0.491	0.236	0.056	0.028	0.954	2.079	0.038	
avie 2001 A	0.077	0.147	0.022	-0.211	0.365	0.525	0.600	
avie 2001 B	-0.125	0.174	0.030	-0.465	0.216	-0.719	0.472	
avie 2001 C	-0.044	0.185	0.034	-0.406	0.318	-0.241	0.810	
efebvre 2008	0.338	0.276	0.076	-0.202	0.878	1.225	0.220	▏
in 2013 A	-0.081	0.227	0.051	-0.525	0.363	-0.358	0.720	
in 2013 B	0.169	0.210	0.044	-0.242	0.581	0.806	0.420	
uyster 2012 A	-0.125	0.115	0.013	-0.351	0.101	-1.080	0.280	
uyster 2012 B	0.073	0.137	0.019	-0.196	0.342	0.531	0.596	
uyster 2012 C	-0.194	0.139	0.019	-0.467	0.079	-1.390	0.165	
uyster 2012 D	-0.117	0.149	0.022	-0.408	0.175	-0.782	0.434	
1atos 2013	1.366	0.126	0.016	1.119	1.613	10.848	0.000	
1inoguchi 2005 A	-0.077	0.374	0.140	-0.809	0.655	-0.207	0.836	
1inoguchi 2005 B	0.962	0.343	0.118	0.289	1.635	2.803	0.005	
10nneret 2012	-0.247	0.388	0.150	-1.007	0.514	-0.636	0.525	
Acardle 2007	1.985	0.377	0.142	1.246	2.724	5.265	0.000	
1onneret2010	-0.333	0.368	0.135	-1.054	0.387	-0.907	0.365	
lazzaro 2008 A	0.293	0.249	0.062	-0.196	0.782	1.174	0.240	
Nazzaro 2008 B	-0.187	0.245	0.060	-0.667	0.294	-0.761	0.446	
anaree2011	0.114	0.260	0.067	-0.395	0.623	0.439	0.660	
cusu 2012	0.064	0.280	0.078	-0.484	0.612	0.230	0.818	
yan 2006 A	-0.404	0.251	0.063	-0.896	0.089	-1.607	0.108	
yan 2006 B	-0.138	0.256	0.066	-0.640	0.365	-0.538	0.591	
yan 2007 A	-0.404	0.251	0.063	-0.896	0.089	-1.607	0.108	
yan 2007 B	-0.138	0.256	0.066	-0.640	0.365	-0.538	0.591	
Jocho 2007 C	-0.293	0.325	0.106	-0.931	0.344	-0.902	0.367	
locho 2009 A	0.099	0.078	0.006	-0.055	0.252	1.202	0.207	
chulz 2007 B	-1 354	0.090	0.008	-1 873	-0.824	-5 109	0.000	
harabi 2003	-0.054	0.203	0.013	-0 276	0 164	-0.498	0.618	
ahin 2011 A	3 018	0.112	0.143	2 278	3 758	7 993	0.000	
ahin 2011 B	2 952	0.376	0 142	2 214	3 690	7 843	0.000	
ahin 2011 C	3 243	0.390	0 152	2 480	4 007	8 324	0.000	
ahin 2011 D	1 790	0.306	0.093	1 191	2 389	5 857	0.000	
ahin 2011 E	2.017	0.320	0,102	1.390	2.644	6,306	0.000	
ahin 2011 F	2 034	0 315	0.099	1 415	2 652	6 447	0.000	
harma 2006 A	0 455	0 226	0.051	0 012	0 899	2 011	0 044	
harma 2006 B	0.796	0.232	0.054	0.340	1.251	3.425	0.001	
alord 2009	-0.211	0.388	0,151	-0.972	0.550	-0.544	0.587	
an 2006	0,111	0.142	0.020	-0.167	0.388	0,781	0.435	
an 2012	0.418	0,188	0.035	0.049	0.787	2,222	0.026	
ogeiro 2012 A	0.267	0.078	0.006	0.114	0.421	3,420	0.001	
ogeiro 2012 B	0.491	0.086	0.007	0.322	0.659	5.699	0.000	
okuda 2008 A	-0.179	0.339	0.115	-0.843	0.484	-0.530	0.596	
okuda 2008 B	-0.308	0.315	0.099	-0.925	0.308	-0.981	0.327	
sioufis 2007	1.087	0.216	0.047	0.664	1.510	5.036	0.000	
Itriainen 2013 A	-0.120	0.356	0.127	-0.818	0.579	-0.336	0.737	
Itriainen 2013 B	0.303	0.358	0,128	-0.399	1.004	0.846	0.398	
Itriainen 2013 C	0.103	0.354	0.125	-0.590	0.797	0.292	0.770	
atansever 2011 A	-0.271	0.392	0.154	-1.039	0,498	-0.690	0.490	
atansever 2011 R	-1 679	0 367	0 135	-7 399	-0 959	-4 572	0.000	
arol 2010 A	0 177	0.307	0.135	-0 324	0.535	4.572	0.000	
	0 162	0.230	0.000	-0 380	0.079	0.007	0 559	
arol 2010 B	1.162	0.326	0.106	0.500	1 804	3 571	0.000	
/arol 2010 B		0.320	0.100	0.325	1.004	5.571	0.000	
Varol 2010 B Vysocka 2013 A	1.104	A 24A	0.001	-1 200	-0.005		0 0 0 0 1	
Varol 2010 B Wysocka 2013 A Vysocka 2013 B	-0.693	0.310	0.096	-1.302	-0.085	-2.234	0.026	│ │ ──₩ <u>─</u> │ │
Varol 2010 B Wysocka 2013 A Wysocka 2013 B Geboah 2011 A	-0.693 -0.269	0.310	0.096	-1.302	-0.085	-2.234	0.026	
/arol 2010 B Vysocka 2013 A Vysocka 2013 B 'eboah 2011 A 'eboah 2011 B	-0.693 -0.269 -0.171	0.310 0.074 0.071	0.096 0.006 0.005	-1.302 -0.414 -0.311	-0.085 -0.123 -0.031	-2.234 -3.617 -2.396	0.026 0.000 0.017	

5% CI

Journal of Clinical Sleep Medicine, Vol. 10, No. 5, 2014

4.00

Figure A3—HDL cholesterol, standardized difference in means, OSA versus controls

Study name			Statistics for	r each stu	idy			Std diff in means and 95% CI
	Std diff	Standard	Variance	Lower	Upper	7.Value	n-Value	
Assoumou 2012	-5 215	0 148	0.022	-5 505	-4 925	-35 240	0.000	k I I I
Balachandaran 2012	-0.716	0.241	0.058	-1.189	-0.243	-2.969	0.003	
Barcelo 2008 A	-0.612	0.305	0.093	-1.210	-0.014	-2.006	0.045	
Barcelo 2008 B	-0.063	0.302	0.091	-0.161	0.140	-0.608	0.154	
Basoglu 2011	-0.080	0.239	0.057	-0.549	0.389	-0.335	0.738	
Bhushan 2011 A Bhushan 2011 B	0.000	0.127	0.016	-0.249	0.249	0.000	1.000	
Blomster 2013	-0.294	0.183	0.034	-0.653	0.065	-1.604	0.109	
Bhushan 2009	0.102	0.217	0.047	-0.324	0.528	0.470	0.638	
Barcelo 2004 A Barcelo 2004 B	-0.525	0.317	0.101	-1.146	0.097	-1.656	0.098	
Cao 2012	-0.675	0.199	0.040	-1.066	-0.285	-3.387	0.001	
Chihara 2012 A Chihara 2012 B	0.297	0.322	0.104	-0.333	0.928	0.924	0.355	
Cholidou 2013 A	0.166	0.327	0.107	-0.460	0.373	0.519	0.604	
Cholidou 2013 B	-0.679	0.338	0.114	-1.341	-0.017	-2.010	0.044	│ │ ──╋ <u>−</u> ┥ │
Cintra 2011	-0.285	0.115	0.013	-0.511	-0.060	-2.483	0.013	
Cofta 2013 B	0.000	0.325	0.106	-0.637	0.637	0.000	1.000	
Cofta 2013 C	-1.208	0.340	0.115	-1.873	-0.542	-3.555	0.000	
Czerniawska 2008 coughlin 2004	-0.302	0.243	0.059	-0.777	0.174	-1.243	0.214	
Can et al 2006	-0.320	0.260	0.068	-0.829	0.190	-1.231	0.218	
Davies 1994	-0.355	0.368	0.135	-1.076	0.367	-0.964	0.335	│ <u>│</u> ──₩┼─ │
Garcia-rio 2013 A	-1.055	0.234	0.055	-0.244	-1.197	0.550	0.582	
Garcia-rio 2013 B	0.000	0.187	0.035	-0.367	0.367	0.000	1.000	📫
Grassi 2010 A	-17.960	2.115	4.474	-22.106	-13.814	-8.491	0.000	K <u> </u>
Guasti 2010 B	-2.000	0.435	0.189	-2.853	-0.061	-4.595	0.000	
Gruber 2006	0.000	0.225	0.051	-0.441	0.441	0.000	1.000	
Gambineri 2003	0.053	0.365	0.133	-0.663	0.768	0.144	0.886	
Guill 2010 A Guill 2010 B	-2.078	0.403	0.162	-3.018	-0.392	-2.932	0.003	
lesato 2007	-5.271	0.322	0.104	-5.902	-4.640	-16.368	0.000	k T
lp 2000 Kraiczi 2000	-0.062	0.258	0.067	-0.568	0.444	-0.241	0.810	
Kono 2007	-2.600	0.431	0.204	-3.151	-2.049	-9.251	0.000	
Lam 2006	-0.333	0.130	0.017	-0.589	-0.078	-2.557	0.011	
Lam 2009	-0.407	0.235	0.055	-0.868	0.055	-1.728	0.084	
Lavie 2001 B	-0.116	0.148	0.022	-0.456	0.224	-0.667	0.505	
Lavie 2001 C	0.042	0.185	0.034	-0.320	0.404	0.229	0.819	· · · · · · ·
Lefebvre 2008	0.000	0.274	0.075	-0.537	0.537	0.000	1.000	
Lin 2013 B	-0.191	0.210	0.032	-0.602	0.002	-0.907	0.340	
Luyster 2012 A	-0.123	0.115	0.013	-0.349	0.103	-1.069	0.285	
Luyster 2012 B	-0.306	0.138	0.019	-0.576	-0.036	-2.218	0.027	
Luyster 2012 D	-0.548	0.151	0.020	-0.844	-0.252	-3.627	0.000	
Mcardle 2007	0.000	0.309	0.095	-0.605	0.605	0.000	1.000	
Makino 2009 A Makino 2009 B	-0.687	0.265	0.070	-1.207	-0.167	-2.590	0.010	
Makino 2009 C	0.000	0.246	0.061	-0.482	0.482	0.000	1.000	
Matos 2013	-0.045	0.113	0.013	-0.268	0.177	-0.400	0.689	
Minoguchi 2005 A Minoguchi 2005 B	1.454	0.419	0.176	0.632	-1.730	3.466	0.001	
Monneret 2012	0.000	0.387	0.150	-0.758	0.758	0.000	1.000	
Monneret 2010	-0.248	0.367	0.134	-0.967	0.470	-0.677	0.498	
Nazzaro 2008 A	0.338	0.250	0.062	-0.152	0.828	0.000	1.000	
Pierola 2007	-0.180	0.100	0.010	-0.376	0.015	-1.813	0.070	
Punjabi 2002 A Punjabi 2002 B	-0.188	0.208	0.043	-0.596	0.220	-0.903	0.366	
Punjabi 2002 D	-0.525	0.215	0.048	-1.073	0.023	-1.877	0.061	
Panaree 2011	-4.635	0.488	0.238	-5.590	-3.679	-9.504	0.000	← _
Rusu 2012 Ryan 2006 A	-0.809	0.287	0.082	-1.371	-0.247	-2.822	0.005	
Ryan 2006 B	-0.092	0.256	0.066	-0.594	0.410	-0.359	0.719	
Ryan 2007 A	0.044	0.249	0.062	-0.444	0.531	0.175	0.861	
Ryan 2007 C	-0.092	0.256	0.000	-0.594	0.410	-0.359	0.185	
Roche 2009 A	-0.171	0.078	0.006	-0.324	-0.017	-2.175	0.030	
Roche 2009 B	-0.451	0.091	0.008	-0.630	-0.272	-4.941	0.000	
Sharabi 2003	0.000	0.512	0.097	-0.220	0.220	0.000	1.000	
sharma 2006 A	-0.002	0.224	0.050	-0.440	0.436	-0.008	0.994	–∰–
sharma 2006 B	-0.018	0.224	0.050	-0.456	0.421	-0.079	0.937	
Sahin 2011 A	-0.363	0.260	0.068	-0.873	0.147	-1.395	0.163	
Sahin 2011 B	-0.736	0.269	0.072	-1.264	-0.209	-2.737	0.006	
Sahin 2011 C Sahin 2011 D	-0.666	0.263	0.069	-1.181	-0.150	-2.530	0.011	
Sahin 2011 E	-0.043	0.260	0.068	-0.554	0.467	-0.167	0.868	
Sahin 2011 F	0.000	0.256	0.066	-0.502	0.502	0.000	1.000	
Tan 2006	-0.148	0.142	0.020	-0.426	0.129	-1.046	0.296	
Togeiro 2013 A	-0.173	0.078	0.006	-0.326	-0.020	-2.213	0.027	
Togeiro 2013 B	-0.289	0.086	0.007	-0.457	-0.122	-3.381	0.001	
Tokuda 2008 A	-0.490	0.343	0.118	-1.162	0.182	-1.428	0.153	
Tsioufis 2007	-0.576	0.206	0.042	-0.979	-0.173	-2.802	0.005	
Vatansever 2011 A	1.119	0.414	0.172	0.306	1.931	2.699	0.007	
Vatansever 2011 B Varol 2010 A	-0.422	0.320	0.103	-1.050	0.206	-1.317	0.188	│ │ ────┼ <u>─</u> ─ │
Varol 2010 B	0.000	0.276	0.076	-0.541	0.541	0.000	1.000	
Wysocka 2013 A	-1.302	0.332	0.110	-1.952	-0.651	-3.922	0.000	
Yeboah 2011 A	-0.030	0.350	0.123	-2.354	-0.982	-4.765	0.000	│ ┤▀── ▙ │
Yeboah 2011 B	0.000	0.071	0.005	-0.140	0.140	0.000	1.000	
	-0.433	0.087	0.008	-0.604	-0.262	-4.955	0.000	
								Favors OSA Favors Contro

Journal of Clinical Sleep Medicine, Vol. 10, No. 5, 2014

4.00

Figure A4—Triglycerides, standardized difference in means, OSA versus controls

Study name	Statistics for each study										
	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value				
Assoumou 2012	2.000	0.087	0.008	1.830	2.170	23.079	0.000				
Barcelo 2008 A	0.706	0.307	0.094	0.104	1.309	2.298	0.022				
Barcelo 2010	4.325	0.184	0.034	3.964	4.685	23.519	0.000				
Basoglu 2011	1.425	0.268	0.072	0.900	1.950	5.322	0.000				
Bhushan 2011 B	0.023	0.127	0.016	-0.226	1.065	1.232	0.858				
Blomster 2013	0.194	0.183	0.033	-0.164	0.552	1.063	0.288				
Bhushan 2009 Barcelo 2004 A	-0.386	0.211	0.045	-0.800	0.028	-1.826	0.068				
Barcelo 2004 B	0.009	0.312	0.097	-0.505	0.820	0.357	0.721				
Coughlin 2004	3.298	0.303	0.092	2.703	3.892	10.876	0.000				
Can 2006 Cao 2012	1.506	0.293	0.086	0.932	2.079	5.147	0.000				
Chihara 2012 A	0.235	0.322	0.103	-0.355	0.906	0.858	0.391				
Chihara 2012 B	0.566	0.332	0.110	-0.084	1.217	1.707	0.088				
Cholidou 2013 A cholidou 2013 B	-0.207	0.320	0.102	-0.834	0.419	-0.649	0.516				
Chung 2011 A	0.068	0.172	0.030	-0.269	0.406	0.397	0.691				
Chung 2011 B	0.113	0.175	0.031	-0.231	0.456	0.642	0.521				
Cofta 2013 A	-1.407	0.114	0.013	-0.175	-0.723	-4.031	0.667				
Cofta 2013 B	-0.766	0.337	0.113	-1.425	-0.106	-2.275	0.023				
Cofta 2013 C	-0.242	0.314	0.098	-0.856	0.373	-0.771	0.441				
Davies 1994	0.421	0.366	0.039	-0.531	0.903	0.509	0.611				
Drager 2010	1.792	0.239	0.057	1.323	2.260	7.497	0.000				
Garcia-rio 2013 A	-0.119	0.173	0.030	-0.458	0.221	-0.684	0.494				
Grassi 2010 A	15.206	1.800	3.240	11.678	18.734	8.448	0.000				
Grassi 2010 B	1.000	0.378	0.143	0.260	1.740	2.648	0.008				
Guasti 2011 Gruber 2005	0.630	0.401	0.161	-0.156	1.416	1.572	0.116				
Gambineri 2003	1.283	0.328	0.108	0.498	2.069	3.201	0.001				
Guill 2010 A	3.071	0.544	0.296	2.004	4.137	5.644	0.000				
Guill 2010 B	3.484	0.612	0.375	2.284	4.684	5.691	0.000				
lesato 2007	5.041	0.205	0.098	4.429	5.654	16.137	0.000				
Kono 2007	-1.603	0.238	0.057	-2.070	-1.136	-6.731	0.000				
Kraiczi 2000	0.526	0.455	0.207	-0.366	1.417	1.155	0.248				
Lam 2009	0.186	0.138	0.025	-0.272	0.644	0.795	0.427				
Lavie 2001 A	0.000	0.147	0.022	-0.288	0.288	0.000	1.000				
Lavie 2001 B	0.175	0.174	0.030	-0.166	0.516	1.008	0.314				
Lefebvre 2008	1.649	0.185	0.034	1.036	2.261	5.277	0.430				
Lin 2013 A	-1.204	0.246	0.060	-1.686	-0.722	-4.896	0.000				
Lin 2013 B	0.323	0.211	0.044	-0.090	0.737	1.532	0.125				
Luyster 2012 B	0.201	0.138	0.013	-0.068	0.471	1.464	0.143				
Luyster 2012 C	0.151	0.139	0.019	-0.122	0.424	1.082	0.279				
Luyster 2012 D Makino 2009 A	0.167	0.149	0.022	-0.125	0.459	1.122	0.262				
Makino 2009 B	0.606	0.244	0.059	0.129	1.084	2.488	0.013				
Makino 2009 C	-0.327	0.247	0.061	-0.812	0.158	-1.322	0.186				
Matos 2013 Minoguchi 2005 A	-0.165	0.14/	0.022	2.060	2.637	-0.440	0.000				
Minoguchi 2005 B	-0.221	0.327	0.107	-0.861	0.419	-0.677	0.499				
Monneret 2010	0.895	0.383	0.147	0.144	1.645	2.336	0.019				
Monneret 2012 Mcardle 2007	0.469	0.391	0.153	-0.297	1.234	2.878	0.231				
Marin 2005 A	0.163	0.079	0.006	0.008	0.319	2.060	0.039				
Marin 2005 B	0.100	0.090	0.008	-0.076	0.276	1.115	0.265				
Marin 2005 C Marin 2005 D	0.244	0.072	0.005	-0.036	0.385	3.399	0.001				
Nazzaro 2008 A	0.135	0.248	0.062	-0.351	0.622	0.545	0.586				
Nazzaro 2008 B	-0.029	0.245	0.060	-0.509	0.450	-0.120	0.904				
Rusu 2012	-0.091	0.100	0.010	-0.639	0.477	-0.327	0.005				
Ryan 2007 A	0.536	0.253	0.064	0.040	1.032	2.117	0.034				
kyan 2007 B Ryan 2007 C	0.557	0.261	0.068	0.046	1.069	2.135	0.033				
Roche 2009 A	0.032	0.032	0.006	-0.121	0.186	0.414	0.679				
Roche 2009 B	0.237	0.091	0.008	0.059	0.414	2.611	0.009				
SaiOrd 2009 Sharma 2006 A	1.104	0.415	0.173	0.289	1.918	2.657	0.008				
Sharma 2006 B	0.172	0.224	0.050	-0.267	0.611	0.766	0.443				
Sahin 2011 A	2.449	0.342	0.117	1.779	3.118	7.170	0.000				
Sahin 2011 B Sahin 2011 C	3.628	0.424	0.179	2.798	4.459	8.567	0.000				
Sahin 2011 D	1.027	0.275	0.075	0.489	1.565	3.739	0.000				
Sahin 2011 E	1.954	0.316	0.100	1.333	2.574	6.173	0.000				
Sanin 2011 F Sharabi 2003	2.586	0.347	0.120	1.906	3.266	7.453	0.000				
Tan 2006	2.762	0.195	0.038	2.380	3.145	14.138	0.000				
Tan 2012	0.233	0.187	0.035	-0.134	0.600	1.242	0.214				
Togeiro 2013 A Togeiro 2013 B	0.348	0.078	0.006	0.194	0.502	4.439 6.308	0.000				
Tokuda 2008 A	-0.059	0.338	0.114	-0.722	0.604	-0.174	0.862				
I okuda 2008 B Tsioufis 2007	0.180	0.313	0.098	-0.435	0.794	0.573	0.566				
Utriainen 2013 A	0.281	0.203	0.041	-0.116	0.886	0.523	0.105				
Utriainen 2013 B	0.417	0.360	0.129	-0.288	1.121	1.159	0.247				
Utriainen 2013 C	0.281	0.355	0.126	-0.415	0.977	0.790	0.429				
Vatansever 2011 A	-2.476	0.496	0.246	-3.448	0.190	-4.996	0.172				
Varol 2010 A	0.000	0.256	0.065	-0.502	0.502	0.000	1.000				
Varol 2010 B Veboah 2011 A	0.280	0.277	0.077	-0.264	0.823	1.009	0.313				
Yeboah 2011 B	0.164	0.074	0.005	0.024	0.303	2.297	0.022				
Wysocka 2013 A	-0.260	0.303	0.092	-0.853	0.334	-0.858	0.391				
Wysocka 2013 B	-2.327	0.390	0.152	-3.092	-1.561	-5.959	0.000				
Zammaron 2008 B	0.183	0.255	0.063	-0.308	0.674	0.731	0.465				
	0.603	0.088	0.008	0.431	0.775	6.875	0.000				

Std diff in means and 95% Cl

Figure A5—TC sensitivity analysis

Study name	me Statistics with stu				moved			Std diff in means (95% Cl) with study removed
	Point	Standard	Variance	Lower	Upper	7-Value	n-Value	
Assoumou 2012	0.278	0.059	0.003	0.162	0.393	4.713	0.000	1 1 1 1
Balachandaran 2012	0.268	0.062	0.004	0.145	0.390	4.290	0.000	
Barcelo 2004 A	0.272	0.062	0.004	0.150	0.394	4.303	0.000	
Barcelo 2008 A	0.270	0.062	0.004	0.148	0.392	4.332	0.000	
Barcelo 2008 B	0.271	0.062	0.004	0.149	0.393	4.342	0.000	
Basoglu 2011	0.266	0.062	0.004	0.144	0.389	4.271	0.000	
Bhushan 2009 Bhushan 2011 A	0.270	0.063	0.004	0.147	0.392	4.313	0.000	
Bhushan 2011 B	0.268	0.062	0.004	0.146	0.390	4.299	0.000	
Can 2006	0.274	0.062	0.004	0.152	0.396	4.389	0.000	
Cao 2012	0.270	0.062	0.004	0.147	0.392	4.316	0.000	
Chihara 2012 A Chihara 2012 B	0.269	0.062	0.004	0.147	0.392	4.323	0.000	
Cholidou 2013 A	0.267	0.062	0.004	0.145	0.389	4.280	0.000	
Cholidou 2013 B	0.264	0.062	0.004	0.142	0.386	4.247	0.000	
Chung 2011 B	0.269	0.063	0.004	0.147	0.392	4.309	0.000	
Cintra 2011 Cofta 2013 A	0.272	0.063	0.004	0.149	0.395	4.324	0.000	
Cofta 2013 B	0.273	0.062	0.004	0.155	0.395	4.385	0.000	
Cofta 2013 C	0.270	0.062	0.004	0.148	0.392	4.337	0.000	
Czerniawska 2008	0.270	0.062	0.004	0.148	0.393	4.325	0.000	
Davies 1994	0.267	0.062	0.004	0.145	0.390	4.294	0.000	
Drager 2010 A Drager 2010 B	0.267	0.062	0.004	0.145	0.389	4.279 4.278	0.000	
Garcia-rio 2013 A	0.269	0.063	0.004	0.146	0.392	4.301	0.000	
Gambineri 2013 B	0.267	0.062	0.004	0.144	0.389	4.270	0.000	
Gorzewska 2013	0.272	0.062	0.004	0.150	0.394	4.362	0.000	
Grassi 2010 A Grassi 2010 B	0.244	0.061	0.004	0.124	0.363	3.991	0.000	
Gruber 2006	0.201	0.062	0.004	0.140	0.383	4.412	0.000	
Guasti 2011	0.276	0.062	0.004	0.154	0.397	4.432	0.000	
lp 2000	0.264	0.062	0.004	0.142	0.386	4.235	0.000	
Kraiczi 2000	0.264	0.062	0.004	0.142	0.386	4.247	0.000	
Lam 2006	0.266	0.063	0.004	0.144	0.389	4.254	0.000	
Lavie 2001 A	0.272	0.063	0.004	0.149	0.394	4.336	0.000	
Lavie 2001 B	0.272	0.063	0.004	0.149	0.394	4.349	0.000	
Lefebvre2008	0.264	0.062	0.004	0.149	0.386	4.233	0.000	
Lin 2013 A	0.271	0.062	0.004	0.149	0.394	4.347	0.000	
Lin 2013 B Luyster 2012 A	0.270	0.062	0.004	0.148	0.393	4.329	0.000	
Luyster 2012 B	0.271	0.063	0.004	0.148	0.394	4.321	0.000	
Luyster 2012 C	0.274	0.063	0.004	0.151	0.396	4.381	0.000	
Makino 2009 A	0.281	0.062	0.004	0.160	0.403	4.549	0.000	
Makino 2009 B	0.249	0.061	0.004	0.129	0.370	4.070	0.000	
Marin 2005 A	0.269	0.062	0.004	0.147	0.392	4.510	0.000	
Marin 2005 B	0.269	0.063	0.004	0.145	0.393	4.258	0.000	
Marin 2005 C Marin 2005 D	0.271	0.064	0.004	0.146	0.396	4.250	0.000	
Matos 2013	0.244	0.058	0.003	0.129	0.358	4.173	0.000	
Mcardle 2007 Minoguchi 2005 A	0.251	0.062	0.004	0.130	0.372	4.072	0.000	
Minoguchi 2005 B	0.252	0.062	0.004	0.131	0.373	4.082	0.000	
Monneret 2010	0.271	0.062	0.004	0.148	0.393	4.343	0.000	
Nazzaro 2008 A	0.270	0.062	0.004	0.148	0.392	4.326	0.000	
Nazzaro 2008 B Pierola 2007	0.270	0.062	0.004	0.148	0.392	4.327	0.000	
Roche 2009 A	0.275	0.065	0.004	0.152	0.397	4.361	0.000	
Roche 2009 B	0.273	0.063	0.004	0.149	0.396	4.323	0.000	
Ryan 2006 A	0.273	0.062	0.004	0.151	0.395	4.381	0.000	
Ryan 2006 B	0.270	0.062	0.004	0.148	0.392	4.328	0.000	
kyan 2007 A Ryan 2007 B	0.271	0.062	0.004	0.149	0.394	4.347	0.000	
Ryan 2007 C	0.271	0.062	0.004	0.149	0.393	4.344	0.000	
Sahin 2011 A Sahin 2011 B	0.242	0.061	0.004	0.123	0.361	3.980	0.000	
Sahin 2011 C	0.242	0.061	0.004	0.122	0.361	3.975	0.000	
Sahin 2011 D Sahin 2011 F	0.252	0.062	0.004	0.131	0.373	4.094	0.000	
Sahin 2011 F	0.252	0.062	0.004	0.131	0.372	4.089	0.000	
Salord 2009	0.272	0.062	0.004	0.150	0.394	4.363	0.000	
Sharabi 2003	0.255	0.062	0.004	0.134	0.377	4.134 4.313	0.000	
sharma 2006 A	0.267	0.062	0.004	0.144	0.389	4.273	0.000	
Tan 2006	0.264	0.062	0.004	0.142	0.386	4.232	0.000	
Tan 2012	0.267	0.062	0.004	0.144	0.389	4.271	0.000	
Logeiro 2013 A	0.268	0.063	0.004	0.144	0.392	4.233	0.000	
Tokuda 2008 A	0.273	0.062	0.004	0.151	0.395	4.381	0.000	
Tokuda 2008 B	0.273	0.062	0.004	0.151	0.395	4.379	0.000	
Utriainein 2013 A	0.264	0.062	0.004	0.142	0.387	4.240	0.000	
Utriainein 2013 B	0.268	0.062	0.004	0.146	0.390	4.303	0.000	
Utriainein 2013 C Varol 2010 A	0.270	0.062	0.004	0.148	0.392	4.328	0.000	
Varol 2010 B	0.267	0.062	0.004	0.145	0.389	4.283	0.000	
Vatansever 2011 A	0.277	0.062	0.004	0.156	0.399	4.466	0.000	
Wysocka 2013 A	0.265	0.062	0.004	0.101	0.386	4.234	0.000	
Wysocka 2013 B	0.285	0.062	0.004	0.164	0.406	4.630	0.000	
Yeboah 2011 A	0.274	0.063	0.004	0.150	0.398	4.342	0.000	
Zamarron 2008 A	0.249	0.061	0.004	0.129	0.370	4.065	0.000	
Zamarron 2008 B	0.256	0.062	0.004	0.135	0.378	4.142	0.000	
								-4.00 -2.00 0.00 2.00 4.0
								Favors A Favors B

Figure A6—LDL sensitivity analysis

			Statistics with	h study r	emovea			stu uni in means (95% Cr) with study remove
	Point	Standard error	Variance	Lower	Upper limit	Z-Value	p-Value	
Assournou 2012	0 275	0.065	0.004	0 148	0.402	4 250	0.000	
Barccelo 2004 A	0.299	0.072	0.005	0.158	0.440	4.155	0.000	
Barccelo 2004 B	0.301	0.072	0.005	0.160	0.442	4.181	0.000	
Basoglu 2011	0.288	0.072	0.005	0.148	0.429	4.016	0.000	
Cao 2012	0.298	0.072	0.005	0.156	0.439	4.120	0.000	
Cholidou 2013 A	0.296	0.072	0.005	0.155	0.437	4.116	0.000	
Cholidou 2013 B	0.294	0.072	0.005	0.153	0.435	4.087	0.000	
Chung 2011 A	0.302	0.072	0.005	0.161	0.444	4.191	0.000	
Chung 2011 B	0.302	0.072	0.005	0.161	0.444	4.190	0.000	
Lintra 2011	0.300	0.073	0.005	0.158	0.443	4.128	0.000	
Cofta 2013 A	0.307	0.072	0.005	0.166	0.447	4.277	0.000	
Cofta 2013 D	0.201	0.072	0.005	0.140	0.420	4.003	0.000	
Zorniawska 2008	0.301	0.072	0.005	0.160	0.442	4.100	0.000	
Coughlin 2004	0.291	0.072	0.005	0.150	0.432	4.040	0.000	
Can 2006	0.269	0.070	0.005	0.131	0.406	3.826	0.000	
Davies 1994	0.295	0.072	0.005	0.154	0.436	4.104	0.000	
Drager 2010	0.298	0.072	0.005	0.156	0.439	4.121	0.000	
Garcia-rio 2013 A	0.299	0.072	0.005	0.157	0.441	4.133	0.000	
Garcia-rio 2013 B	0.296	0.072	0.005	0.155	0.438	4.102	0.000	
Guasti 2011	0.309	0.072	0.005	0.169	0.449	4.323	0.000	
Gruber 2006	0.300	0.072	0.005	0.158	0.441	4.158	0.000	
P 2000	0.295	0.072	0.005	0.154	0.436	4.095	0.000	
Kraiczi 2000	0.292	0.072	0.005	0.151	0.433	4.067	0.000	■
.am 2006	0.299	0.073	0.005	0.156	0.441	4.111	0.000	
am 2009	0.293	0.072	0.005	0.152	0.435	4.072	0.000	
avie 2001 A	0.299	0.072	0.005	0.157	0.441	4.129	0.000	
avie 2001 B	0.302	0.072	0.005	0.160	0.443	4.180	0.000	■
avie 2001 C	0.301	0.072	0.005	0.159	0.442	4.163	0.000	
erebvre 2008	0.295	0.072	0.005	0.154	0.437	4.102	0.000	
in 2013 A	0.301	0.072	0.005	0.160	0.442	4.174	0.000	
III 2013 B	0.298	0.072	0.005	0.156	0.439	4.124	0.000	
uyster 2012 A	0.302	0.073	0.005	0.160	0.444	4.105	0.000	
uyster 2012 D	0.299	0.073	0.005	0.157	0.441	4.120	0.000	
uyster 2012 C	0.303	0.072	0.005	0.161	0.444	4.192	0.000	
Matos 2013	0.302	0.072	0.005	0.100	0.416	4.006	0.000	
Minoguchi 2005 A	0.300	0.072	0.005	0 159	0.441	4 171	0.000	
Minoguchi 2005 B	0.288	0.072	0.005	0.148	0.429	4.019	0.000	
Monneret 2012	0.301	0.072	0.005	0.161	0.442	4.197	0.000	
Acardle 2007	0.278	0.071	0.005	0.138	0.417	3.905	0.000	
Monneret2010	0.303	0.072	0.005	0.162	0.443	4.212	0.000	
Vazzaro 2008 A	0.296	0.072	0.005	0.155	0.437	4.107	0.000	
Vazzaro 2008 B	0.302	0.072	0.005	0.161	0.443	4.195	0.000	
anaree2011	0.298	0.072	0.005	0.157	0.439	4.139	0.000	
Rusu 2012	0.299	0.072	0.005	0.158	0.440	4.148	0.000	
Ryan 2006 A	0.305	0.072	0.005	0.164	0.445	4.239	0.000	
Ryan 2006 B	0.301	0.072	0.005	0.160	0.442	4.185	0.000	
kyan 2007 A	0.305	0.072	0.005	0.164	0.445	4.239	0.000	
Ryan 2007 B	0.301	0.072	0.005	0.160	0.442	4.185	0.000	
Cyan 2007 C	0.303	0.072	0.005	0.162	0.443	4.210	0.000	
Coche 2009 A	0.300	0.074	0.005	0.155	0.444	4.059	0.000	
chulz 2009 D	0.300	0.075	0.005	0.157	0.444	4.097	0.000	
harabi 2003	0.301	0.073	0.005	0.159	0.444	4 144	0.000	
ahin 2011 A	0.267	0.070	0.005	0.129	0.404	3.809	0.000	
ahin 2011 B	0.267	0.070	0.005	0.130	0,405	3,814	0.000	
ahin 2011 C	0.265	0.070	0.005	0.128	0.402	3.793	0.000	
ahin 2011 D	0.278	0.071	0.005	0.139	0.417	3.912	0.000	
ahin 2011 E	0.276	0.071	0.005	0.137	0.415	3.890	0.000	
ahin 2011 F	0.275	0.071	0.005	0.137	0.414	3.888	0.000	
harma 2006 A	0.294	0.072	0.005	0.153	0.435	4.076	0.000	
harma 2006 B	0.289	0.072	0.005	0.149	0.430	4.025	0.000	
alord 2009	0.301	0.072	0.005	0.160	0.442	4.191	0.000	
an 2006	0.299	0.073	0.005	0.157	0.441	4.119	0.000	
an 2012	0.294	0.072	0.005	0.153	0.436	4.076	0.000	■
ogeiro 2012 A	0.297	0.074	0.005	0.152	0.442	4.021	0.000	
ogeiro 2012 B	0.294	0.073	0.005	0.150	0.437	4.010	0.000	■
okuda 2008 A	0.301	0.072	0.005	0.160	0.442	4.189	0.000	■
okuda 2008 B	0.303	0.072	0.005	0.162	0.444	4.213	0.000	■
sioutis 2007	0.285	0.072	0.005	0.145	0.426	3.985	0.000	
Itriainen 2013 A	0.300	0.072	0.005	0.159	0.441	4.179	0.000	
Juriainen 2013 B	0.296	0.072	0.005	0.155	0.437	4.114	0.000	
utriainen 2013 C	0.298	0.072	0.005	0.157	0.439	4.144	0.000	
atansever 2011 A	0.302	0.072	0.005	0.161	0.442	4.200	0.000	
Vacansever 2011 B	0.316	0.071	0.005	0.177	0.455	4.457	0.000	
arol 2010 A	0.297	0.072	0.005	0.156	0.439	4.127	0.000	
arol 2010 P	0.298	0.072	0.005	0.156	0.439	4.131	0.000	
Varol 2010 B	0.200	0.072	0.005	0.145	0.449	A 204	0.000	
Varol 2010 B Nysocka 2013 A Nysocka 2013 P	0 207		1110/3	v.10/	0.440	1.200	0.000	, , ,∎ ,
Varol 2010 B Nysocka 2013 A Nysocka 2013 B (eboah 2011 A	0.307	0.072	0.005	0 162	0 446	4 200	0.000	
Varol 2010 B Vysocka 2013 A Vysocka 2013 B Yeboah 2011 A Yeboah 2011 B	0.307 0.304 0.303	0.072	0.005	0.162	0.446	4.200	0.000	

Figure A7—HDL sensitivity analysis

Study name

	Point	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	
Assoumou 2012	-0.191	0.060	0.004	-0.308	-0.073	-3.181	0.001	I I ■ I ?
Balachandaran 2012	-0.291	0.108	0.012	-0.503	-0.078	-2.683	0.007	
Barcelo 2008 A	-0.293	0.108	0.012	-0.505	-0.080	-2.702	0.007	
Barcelo 2008 B	-0.308	0.108	0.012	-0.520	-0.096	-2.848	0.004	
Barcelo 2010	-0.302	0.110	0.012	-0.518	-0.086	-2.742	0.006	
Basoglu 2011	-0.301	0.108	0.012	-0.513	-0.088	-2.772	0.006	
Bhushan 2011 A	-0.303	0.109	0.012	-0.517	-0.088	-2.766	0.006	
Bhushan 2011 B	-0.307	0.108	0.012	-0.519	-0.095	-2.841	0.004	
Blomster 2013	-0.298	0.109	0.012	-0.511	-0.084	-2.735	0.006	
Cao 2012	-0.291	0.109	0.012	-0.504	-0.079	-2.684	0.007	
Chihara 2012 A	-0.306	0.108	0.012	-0.518	-0.094	-2.020	0.005	
Cholidou 2013 A	-0.298	0.108	0.012	-0.510	-0.083	-2.750	0.005	
Cholidou 2013 B	-0 292	0 105	0.012	-0 504	-0.050	-2 696	0.007	
Cintra 2011	-0.298	0.110	0.012	-0.514	-0.083	-2.714	0.007	
Cofta 2013 A	-0.316	0.108	0.012	-0.528	-0.105	-2.936	0.003	
Cofta 2013 B	-0.302	0.108	0.012	-0.514	-0.089	-2.786	0.005	
Cofta 2013 C	-0.284	0.108	0.012	-0.496	-0.072	-2.630	0.009	
Czerniawska 2008	-0.297	0.108	0.012	-0.510	-0.085	-2.740	0.006	
Davies 1994	-0.296	0.108	0.012	-0.508	-0.084	-2.740	0.006	
Drager 2010	-0.276	0.107	0.012	-0.486	-0.065	-2.567	0.010	
Garcia-rio 2013 A	-0.304	0.109	0.012	-0.517	-0.091	-2.793	0.005	
Garcia-rio 2013 B	-0.302	0.109	0.012	-0.515	-0.089	-2.780	0.005	
Grassi 2010 A	-0.258	0.105	0.011	-0.464	-0.052	-2.454	0.014	
Grassi 2010 B	-0.275	0.108	0.012	-0.485	-0.064	-2.552	0.011	
Guasti 2011	-0.290	0.108	0.012	-0.501	-0.078	-2.679	0.007	
Kraiczi 2000	-0.306	0.108	0.012	-0.518	-0.094	-2.834	0.005	
Lam 2000	-0.297	0.110	0.012	-0.512	-0.085	-2.715	0.007	
Lavio 2001 A	-0.290	0.109	0.012	-0.508	-0.083	-2.725	0.000	
Lavie 2001 R	-0.300	0.109	0.012	-0.514	-0.087	-2 760	0.006	
Lavie 2001 C	-0.303	0 109	0.012	-0.516	-0.090	-2 786	0.005	
Lefebyre 2008	-0.302	0.108	0.012	-0.514	-0.089	-2.785	0.005	
Lin 2013 A	-0.305	0.108	0.012	-0.518	-0.093	-2.817	0.005	
Lin 2013 B	-0.299	0.109	0.012	-0.512	-0.086	-2.753	0.006	
Luyster 2012 A	-0.301	0.110	0.012	-0.516	-0.086	-2.739	0.006	
Luyster 2012 B	-0.298	0.109	0.012	-0.512	-0.083	-2.722	0.006	
Luyster 2012 C	-0.295	0.109	0.012	-0.509	-0.081	-2.697	0.007	
Luyster 2012 D	-0.294	0.109	0.012	-0.507	-0.080	-2.692	0.007	
Makino 2009 A	-0.291	0.108	0.012	-0.504	-0.079	-2.689	0.007	
Makino 2009 B	-0.332	0.106	0.011	-0.540	-0.124	-3.125	0.002	
Makino 2009 C	-0.302	0.108	0.012	-0.514	-0.089	-2.784	0.005	
Minoguchi 2005	-0.302	0.110	0.012	-0.518	-0.087	-2.752	0.006	
Minoguchi 2005 R	-0.320	0.103	0.012	-0.331	-0.057	-2.978	0.003	
Monneret 2012	-0.301	0.108	0.012	-0.513	-0.089	-2.786	0.005	
Pierola 2007	-0.300	0.110	0.012	-0.517	-0.084	-2.719	0.007	
Punjabi 2002 A	-0.299	0.109	0.012	-0.512	-0.086	-2.753	0.006	
Punjabi 2002 B	-0.293	0.109	0.012	-0.506	-0.081	-2.703	0.007	
Punjabi 2002 C	-0.294	0.108	0.012	-0.506	-0.081	-2.712	0.007	
Rusu 2012	-0.290	0.108	0.012	-0.502	-0.077	-2.675	0.007	
Ryan 2006 A	-0.303	0.108	0.012	-0.515	-0.090	-2.791	0.005	
Ryan 2006 B	-0.300	0.108	0.012	-0.513	-0.088	-2.771	0.006	
Ryan 2007 A	-0.303	0.108	0.012	-0.515	-0.090	-2.791	0.005	
Ryan 2007 B	-0.300	0.108	0.012	-0.513	-0.088	-2.771	0.006	
Ryan 2007 C	-0.295	0.108	0.012	-0.507	-0.083	-2.727	0.006	
Schulz 2005	-0.335	0.106	0.011	-0.543	-0.128	-3.164	0.002	
Top 2012	-0.303	0.110	0.012	-0.518	-0.065	-2.759	0.000	
Togeiro 2013 A	-0.301	0.107	0.012	-0.507	-0.087	-2.705	0.007	
Togeiro 2013 B	-0 299	0 111	0.012	-0 517	-0.051	-2 686	0.007	
Tokuda 2008 A	-0.294	0.108	0.012	-0.507	-0.082	-2.721	0.007	
Tokuda 2008 B	-0.292	0.108	0.012	-0.504	-0.080	-2.697	0.007	
Vatansever 2011 A	-0.316	0.108	0.012	-0.527	-0.105	-2.933	0.003	
Vatansever 2011 B	-0.295	0.108	0.012	-0.508	-0.083	-2.729	0.006	
Yeboah 2011 A	-0.304	0.112	0.013	-0.523	-0.084	-2.712	0.007	
Yeboah 2011 B	-0.304	0.112	0.013	-0.524	-0.085	-2.713	0.007	
	-0.297	0.107	0.011	-0.507	-0.087	-2.771	0.006	
								-4.00 -2.00 0.00 2.00 4.
								Favors OSA Favors Controls

Statistics with study removed

Std diff in means (95% CI) with study removed

Figure A8—TG sensitivity analysis

Study name			Statistics with	h study re	moved				Std diff i	in means (95	5% CI) with	study removed
	Point	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value					
Assoumou 2012	0.584	0.084	0.007	0.420	0.748	6.971	0.000	ï	1			
Barcelo 2008 A	0.602	0.088	0.008	0.429	0.776	6.822	0.000					
Barcelo 2008 B	0.557	0.088	0.008	0.433	0.715	6.903	0.000				=	
Basoglu 2011	0.595	0.088	0.008	0.422	0.768	6.753	0.000					
Bhushan 2011 A Bhushan 2011 B	0.610	0.089	0.008	0.436	0.784	6.867	0.000				=	
Blomster 2013	0.608	0.089	0.008	0.434	0.781	6.863	0.000				-	
Bhushan2009 Barcelo 2004 A	0.613	0.088	0.008	0.440	0.786	6.950	0.000				1 1	
Barcelo 2004 B	0.608	0.088	0.008	0.435	0.781	6.887	0.000				-	
Coughlin 2004 Can 2006	0.576	0.087	0.008	0.406	0.746	6.637	0.000				1	
Cao 2012	0.607	0.089	0.008	0.433	0.780	6.854	0.000				=	
Chihara 2012 A Chihara 2012 B	0.607	0.088	0.008	0.433	0.780	6.869	0.000					
Cholidou 2013 A	0.611	0.088	0.008	0.438	0.784	6.924	0.000				=	
cholidou 2013 B	0.605	0.088	0.008	0.432	0.778	6.853	0.000				-	
Chung 2011 B	0.609	0.089	0.008	0.436	0.783	6.873	0.000				1 =	
Cintra 2011	0.610	0.089	0.008	0.435	0.784	6.853	0.000				-	
Cofta 2013 A Cofta 2013 B	0.622	0.088	0.008	0.449	0.794	6.993	0.000				12	
Cofta 2013 C	0.611	0.088	0.008	0.438	0.784	6.929	0.000				- -	
Czerniawska 2008 Davies 1994	0.605	0.088	0.008	0.432	0.779	6.846	0.000				. =	
Drager 2010	0.591	0.088	0.008	0.419	0.763	6.727	0.000					
Garcia-rio 2013 A Garcia-rio 2013 B	0.611	0.088	0.008	0.438	0.784	6.906	0.000					
Grassi 2010 A	0.574	0.087	0.008	0.404	0.744	6.621	0.000				Ŧ	
Grassi 2010 B	0.600	0.088	0.008	0.427	0.773	6.799	0.000				=	
Gruber 2006	0.580	0.087	0.008	0.409	0.751	6.646	0.000				=	
Gambineri 2003	0.597	0.088	0.008	0.425	0.770	6.776	0.000					
Guill 2010 A Guill 2010 B	0.584	0.088	0.008	0.412	0.756	6.643	0.000					
IP 2000	0.603	0.088	0.008	0.430	0.776	6.822	0.000				-	
Iesato 2007 Kono 2007	0.558	0.085	0.007	0.392	0.724	6.592 7.158	0.000				12	
Kraiczi 2000	0.604	0.088	0.008	0.431	0.777	6.848	0.000				- -	
Lam 2006	0.587	0.087	0.008	0.417	0.757	6.754	0.000				1 2	
Lavie 2001 A	0.610	0.089	0.008	0.436	0.784	6.880	0.000				=	
Lavie 2001 B	0.608	0.089	0.008	0.434	0.782	6.864	0.000				=	
Lefebvre 2008	0.593	0.088	0.008	0.438	0.766	6.737	0.000				1 2	
Lin 2013 A	0.621	0.088	0.008	0.449	0.793	7.079	0.000					
Luyster 2012 A	0.606	0.088	0.008	0.433	0.780	6.853	0.000				=	
Luyster 2012 B	0.608	0.089	0.008	0.434	0.782	6.845	0.000				-	
Luyster 2012 C Luyster 2012 D	0.609	0.089	0.008	0.435	0.783	6.854 6.856	0.000				. =	
Makino 2009 A	0.614	0.088	0.008	0.441	0.787	6.960	0.000				- -	
Makino 2009 B Makino 2009 C	0.603	0.088	0.008	0.430	0.777	6.826 6.941	0.000				1 2	
Matos 2013	0.583	0.086	0.007	0.414	0.751	6.787	0.000				=	
Minoguchi 2005 A Minoguchi 2005 B	0.610	0.088	0.008	0.437	0.783	6.918	0.000					
Monneret 2010	0.601	0.088	0.008	0.428	0.774	6.810	0.000				=	
Monneret 2012	0.605	0.088	0.008	0.432	0.778	6.851	0.000				-	
Marin 2005 A	0.610	0.088	0.008	0.427	0.786	6.775	0.000				=	
Marin 2005 B	0.610	0.090	0.008	0.434	0.785	6.812	0.000				-	
Marin 2005 D	0.610	0.090	0.008	0.432	0.786	6.793	0.000				=	
Nazzaro 2008 A	0.608	0.088	0.008	0.435	0.781	6.881	0.000				- E	
Pierola 2008 B	0.608	0.088	0.008	0.437	0.783	6.901	0.000				- 2	
Rusu 2012	0.610	0.088	0.008	0.437	0.783	6.910	0.000				-	
Ryan 2007 A Ryan 2007 B	0.604	0.088	0.008	0.431	0.777	6.835	0.000				1 2	
Ryan 2007 C	0.602	0.088	0.008	0.429	0.776	6.825	0.000				-	
Roche 2009 A Roche 2009 B	0.611	0.090	0.008	0.435	0.787	6.803	0.000					
Salord 2009	0.599	0.088	0.008	0.426	0.772	6.793	0.000				=	
Sharma 2006 A Sharma 2006 R	0.610	0.088	0.008	0.437	0.783	6.898 6.874	0.000					
Sahin 2011 A	0.586	0.088	0.008	0.414	0.758	6.679	0.000					
Sahin 2011 B	0.576	0.087	0.008	0.405	0.747	6.605	0.000					
Sahin 2011 D	0.599	0.088	0.008	0.402	0.745	6.788	0.000				12	
Sahin 2011 E	0.590	0.088	0.008	0.418	0.763	6.714	0.000				-	
Sharabi 2003	0.609	0.088	0.008	0.413	0.784	6.834	0.000				12	
Tan 2006	0.579	0.086	0.007	0.410	0.748	6.726	0.000				- E	
Tan 2012 Togeiro 2013 A	0.607	0.089	0.008	0.434	0.781	6.860	0.000					
Togeiro 2013 B	0.605	0.090	0.008	0.429	0.781	6.741	0.000				-	
i okuda 2008 A Tokuda 2008 B	0.610	0.088	0.008	0.437	0.783	6.907 6.879	0.000					
Tsioufis 2007	0.607	0.089	0.008	0.433	0.780	6.857	0.000					
Utriainen 2013 A	0.607	0.088	0.008	0.434	0.780	6.880	0.000					
Utriainen 2013 C	0.606	0.088	0.008	0.433	0.779	6.869	0.000				1	
Vatansever 2011 A	0.628	0.088	0.008	0.456	0.799	7.162	0.000					
Varol 2010 A	0.609	0.088	0.008	0.440	0.786	6.898	0.000					
Varol 2010 B	0.607	0.088	0.008	0.433	0.780	6.866	0.000					
Yeboah 2011 B	0.612	0.090	0.008	0.436	0.788	6.815	0.000					
Wysocka 2013 A	0.612	0.088	0.008	0.439	0.785	6.931	0.000					
Wysocka 2013 B Zammaron 2008 A	0.629	0.087	0.008	0.457	0.800	7.190 6.834	0.000					
Zammaron 2008 B	0.608	0.088	0.008	0.434	0.781	6.875	0.000					
	0.603	0.088	0.008	0.431	0.775	6.875	0.000	-4.00	-20	0	0.00	2.00
								-1.00	Favors Co	ontrols	0.00	Favors OSA

4.00

Favors OSA