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ABSTRACT 

Arterial stiffness describes the rigidity of the arterial wall. Its significance owes to its relationship with the pulsatile 
afterload presented to the left ventricle and its implications on ventricular-arterial coupling. In adults, the con-
tention that arterial stiffness as a marker and risk factor for cardiovascular morbidity and mortality is gaining support. 
Noninvasive methods have increasingly been adopted in both the research and clinical arena to determine local, 
segmental, and systemic arterial stiffness in the young. With adoption of these noninvasive techniques for use in 
children and adolescents, the phenomenon and significance of arterial stiffening in the young is beginning to be 
unveiled. The list of childhood factors and conditions found to be associated with arterial stiffening has expanded 
rapidly over the last decade; these include traditional cardiovascular risk factors, prenatal growth restriction, vas-
culitides, vasculopathies associated with various syndromes, congenital heart disease, and several systemic diseases. 
The findings of arterial stiffening have functional implications on energetic efficiency, structure, and function of 
the left ventricle. Early identification of arterial dysfunction in childhood may provide a window for early inter-
vention, although longitudinal studies are required to determine whether improvement of arterial function in 
normal and at-risk paediatric populations will be translated into clinical benefits. (Korean Circ J 2010;40:153-162) 
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Introduction 

 
Arterial stiffness, in simple terms, describes the rigi-

dity of the arterial wall. It is primarily determined by st-
ructural components of the arterial wall, vascular smooth 
muscle tone, and transmural distending pressure.1) In-
creasing evidence suggests a role of the endothelium in 
the regulation of arterial stiffness through the release of 
vasoactive mediators that affect smooth muscle tone. 

The significance of arterial stiffness owes to its direct 
relationship with the characteristic impedance of the ar-
terial system, which is the pulsatile component of the af-
terload that is presented to the left ventricle. Further-

more, arterial stiffening increases the velocity at which 
the pulse wave travels, resulting in an earlier return of 
the reflected wave from peripheral sites, and hence, sub-
optimal ventricular-arterial interaction. Given the re-
lationships between arterial stiffness, vascular impedance 
and wave reflection, it is understandable that arterial 
stiffness may impact cardiovascular health. 

The contention that arterial stiffness is a marker of 
vascular disease and a risk factor for cardiovascular mor-
bidity and mortality, in adults, is gaining support. In 
adults, the association of increased arterial stiffness with 
various pathophysiological conditions has been exten-
sively reviewed.2-5) Importantly, stiffness of central arteries, 
as assessed by the aortic pulse wave velocity (PWV) and 
carotid distensibility, has been shown to have an inde-
pendent predictive value for cardiovascular events in the 
general adult population,6)7) in elderly,8) and in adults 
with hypertension,9-11) end-stage renal failure,12-15) and 
impaired glucose tolerance.16) 

Noninvasive methods have been increasingly adopt-
ed in both the research and clinical arenas to determine 
systemic arterial stiffness, and these methods have sig-
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nificantly increased the understanding of the patho-
physiological significance. With adoption of these non-
invasive methodologies for use in children and adole-
scents, the phenomenon and significance of arterial stif-
fening in the young are beginning to unfold. The present 
article aims to provide an overview of the methods used 
to assess arterial stiffness in vivo and of the determinants 
and significance of arterial stiffness in children and ado-
lescents. 

 
Measurement of Arterial  

Stiffness In Vivo 
 
Noninvasive methods are available for determination 

of 1) local or cross-sectional stiffness at a particular site 
in the artery, 2) regional stiffness along the length of an 
arterial segment, and 3) systemic or whole-body arterial 
stiffness. 

 
Local arterial stiffness 

Local arterial stiffness is ascertained by relating changes 
in arterial diameter or cross-sectional area to pressure 
changes at the site of interest. The commonly used in-
dices for quantification of local arterial stiffness are sum-
marized in Table 1. 

For superficial arteries including the brachial, femo-
ral and carotid arteries, the diameter and diameter ch-
ange from end-diastole to end-systole can be assessed 
by ultrasound (Fig. 1A) and echo-tracking techniques. 
Compared with two-dimensional ultrasound assessment, 
echo-tracking permits the tracking of displacement of the 
anterior and posterior arterial walls with a much higher 
precision.2)17)18) For deeper arteries, such as the aorta, mag-
netic resonance imaging19) and transesophageal echocar-
diography with acoustic quantification20) have been used 
to determine the change in arterial diameter during the 
cardiac cycle. 

Ideally, local pressure should be measured at the site 
of diameter measurements. Applanation tonometry (Fig. 
1B) allows noninvasive recording of the arterial pressure 
waveform in the carotid and peripheral conduit arte-
ries.21) The tonometer has the size of a pen, is hand-held 
and gently compressed against the underlying bone, thus 
flattening the artery slightly and equalizing the circum-
ferential pressures. The recorded pressure waveform is 
almost identical to that obtained intra-arterially and can 

then be calibrated against the cuff mean and diastolic 
blood pressures of the brachial artery.22)23) Alternatively, 
the cuff brachial artery pulse pressure has also been com-
monly used for the calculation of local arterial stiffness 
indices. Amplification of pulse pressure along the arte-
rial tree, however, constitutes a potential source of error. 

Recently, tissue Doppler imaging24) and speckle track-
ing echocardiography25)26) have been used to assess arte-
rial strain and strain rate as novel indices of cross-sec-
tional arterial stiffness. 

 
Regional arterial stiffness 

Measuring the PWV over the segment of interest as-
sesses stiffness along the length of an arterial segment 
or regional stiffness. PWV is the speed at which the for-
ward pressure or flow wave is transmitted from the aorta 
through the arterial tree.  

The Bramwell and Hill27) equation relates PWV to 
arterial distensibility: PWV=√(∆P·V)/ ∆Vρ=√1/
ρD, where P is pressure, V is volume, ∆P·V/∆V repre-
sents volume elasticity, ρ is density of blood, and D is 
volume distensibility of the arterial segment. Hence, PWV 
is related inversely to arterial distensibility; in other words, 
the stiffer the artery, the faster the PWV. By providing 
an average stiffness of the arterial segment of interest, 
PWV may provide a better reflection of the general vas-
cular health.  

PWV is determined by dividing the distance of pulse 
travel, between two sites, by the transit time. As the pulse 
pressure and flow pulse propagate at the same velocity, 
the arterial pulse may be registered using pressure-sen-
sitive transducers,28) an oscillometric device,29) applan-

Table 1. Commonly used indices of local or cross-sectional arterial stiffness

Index Definition Formula 

Peterson elastic modulus Pressure change required for a given relative change in diameter (inverse of distensibility) P·D/ DΔ Δ  

Distensibility Relative change in diameter during systole for a given pressure change D/(D· P)Δ Δ  

Compliance Absolute change in diameter during systole for a given pressure change D/ PΔ Δ  

Stiffness index (β) Ratio of ln (systolic/diastolic pressure) to relative change to vessel diameter ln (Ps/Pd)/( D/D)Δ

D: diastolic diameter, DΔ : difference in systolic and diastolic diameter, ln: natural logarithm, PΔ : pressure, Pd: diastolic blood pressure, Ps:
systolic blood pressure 
 

Fig. 1. Derivation of local arterial stiffness by measurement of
(A) diameter changes in the cardiac cycle using two-dimensional
ultrasound, and (B) arterial pressure using applanation tonometry.
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ation tonometry,30) Doppler ultrasound31)32) photoplethy-
smography,33) and magnetic resonance imaging.34)35) The 
pulse recording at the two sites can be obtained simul-
taneously (Fig. 2) or by gating separate recordings to the 
R wave of the electrocardiogram. 

The distance along which the pulse travels is usually 
estimated by direct superficial measurement between the 
two pressure transducers or other devices used to register 
the pulse. Transit time is measured as the time delay be-
tween the feet of the proximal and distal pulse waves 
(Fig. 3). The foot of the pulse wave is used as it is rela-
tively unaffected by wave reflections. A potential source 

of error is the need to use the nearest superficial arte-
ries as a surrogate site for inaccessible central arteries, 
and the estimation of the actual distance between the 
recording sites using surface measurements. Despite these 
limitations, PWV is probably the most widely used te-
chnique for assessment of arterial stiffness. 

  
Systemic arterial stiffness 

Pulse contour analysis has been used to assess syste-
mic or whole-body arterial stiffness noninvasively.36-38) 
One of the methods focuses on the diastolic pressure 
decay of the radial pulse contour obtained by tonome-
try. An algorithm is used to determine the best set of 
values for matching the diastolic contour to a multi-ex-
ponential waveform equation. Based on these values, the 
lumped compliance of the major arteries and that of 
the small peripheral arteries is estimated. However, the 
biologic relevance of the derived lumped compliance 
remains unclear. 

The area method has also been used to determine sys-
temic arterial compliance using the formula: compli-
ance=A/{total vascular resistance×(Pes-Pd)}, where A 
is area under the diastolic portion of the arterial pressure 
wave from end-systole to end-diastole, Pes is end-systolic 
pressure, and Pd is end-diastolic pressure.39)40) The pres-
sure readings and waveform are obtained by applanation 
tonometry over the common carotid artery. The total vas-
cular resistance is calculated as mean blood pressure di-
vided by mean aortic blood flow, the latter obtained by 
a velocimeter positioned at the suprasternal notch. The 
area method nonetheless shares a similar concern as af-
orementioned.  

 
Arterial Stiffening in the Young 

 
Evolution with age 

Aortic, upper limb, and lower limb pulse wave velo-
cities increase with age from child- to adulthood.41-43) 
Notwithstanding the influence of distending pressure 
on arterial stiffness, previous data did not suggest that 
the change in PWV with age is entirely due to differ-
ences in systemic blood pressure.41)42) With cyclical me-
chanical stress, fragmentation of the elastin fibres and 
transfer of stress to the much stiffer collagen fibres in-
evitably results in the progressive increase in vascular 
stiffness.44)  

Furthermore, studies of developmental changes in ar-
terial structure during childhood have demonstrated 
progressive increase in intimal and medial thickness af-
ter birth.45) Hence, the observed age-related increase in 
stiffness is likely related to progressive structural changes 
in the arterial wall during childhood. Interpretation of 
results obtained from paediatric populations at risk for 
arterial dysfunction should therefore take into account 
age-related evolution. 

Proximal site 

Distal site

Transit time

Fig. 3. Derivation of pulse transit time from the feet of the proxi-
mal and distal pulse waves. 

Carotid arterial pressure sensor

Femoral arterial
pressure sensor

Brachial arterial 
pressure cuff

Ankle pressure cuff

Fig. 2. Simultaneous registration of arterial pulse waveforms by
pressure sensors placed at different parts of body for calcul-
ation of pulse transit time. 
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Cardiovascular risk factor 
Traditional cardiovascular risk factors46-56) have been 

associated with arterial stiffening in children and are 
summarized in Table 2. 

 
Prenatal growth restriction 

The ‘fetal origins hypothesis’57) proposes that cardio-
vascular disease originates through adaptation to an ad-
verse environment in utero. These adaptations have been 
suggested to cause permanent alterations in cardiovas-
cular structure and physiology through the process of 
programming. Indeed, there is evidence that individuals 
who are born small may be at risk for arterial dysfunc-
tion in child- and adulthood. 

In very low birth weight, premature infants, reduced 
aortic wall distensibility and whole-body compliance 
have been shown as early as the neonatal period.58) Other 
studies have demonstrated inverse relationships between 
systemic arterial stiffness and gestational age59) and birth 
weight standardized for gestational age.60) In fetuses 
with umbilical placental insufficiency, an increase in af-
terload has been shown to result in a decrease in aortic 
distensibility during the neonatal period.61) Furthermore, 
reduced compliance of the aorta and conduit arteries of 
the legs has been shown to occur in adults born small.62) 

In monozygotic twins with twin-twin transfusion syn-
drome, the growth-restricted donor twin has been re-
ported to have increased peripheral conduit arterial stif-
fness during infancy.63) Such vascular programming has 
been shown to be ameliorated, albeit not completely 
abolished, by intrauterine endoscopic laser ablation of 
placental anastomoses.64) Even in monozygotic twins with-
out twin-twin transfusion syndrome, the twin with the 
lower birthweight has been found to have higher systo-
lic blood pressure and pulse pressure in childhood.65) 

The mechanism whereby low birth weight is associat-
ed with increased arterial stiffness in child- and adult-
hood remains unclear. The reported endothelial dys-
function in individuals born preterm and small-for-ge-
stational age62)66-69) suggests that functional alteration of 
arterial tone may contribute to an increase in systemic 
arterial stiffness. Altered haemodynamics in intraute-
rine growth retardation, which result in preferential per-

fusion of upper part of body,70) may affect the mechani-
cal properties of the large arteries. Another proposed 
mechanism is impaired synthesis of elastin in the arte-
rial wall.44) 

 
Vasculitides 

Vasculitis is the predominant feature in several child-
hood diseases. The acute inflammation and subsequent 
reparative process may lead to replacement of elastic tis-
sue by fibrous scar, thereby potentially altering the me-
chanical properties of the vessels. 

Kawasaki disease, a systemic vasculitis with predilec-
tion for children in the East, is the most commonly ac-
quired heart disease in children in developed countries. 
Apart from the well-documented long-term structural 
alteration and functional disturbance of coronary ar-
teries,71-75) systemic arterial dysfunction is increasingly 
documented. Indeed, concerns have been raised regard-
ing the possibility of its predisposition to premature ath-
erosclerosis in adulthood.76-80) 

Increased stiffness of the carotid artery81)82) and bra-
chioradial artery80) has been documented in the long-
term follow-up of patients with a history of Kawasaki 
disease. Measurement of aortic input impedance dur-
ing cardiac catheterization showed reduction in both 
characteristic impedance and total peripheral arterial 
compliance, regardless of the persistence of coronary ar-
tery aneurysms, suggesting an increase in both central 
and peripheral arterial stiffness.83) The magnitude of ch-
ronic low-grade inflammation, as reflected by elevated 
high-sensitivity C-reactive protein,84)85) in patients with 
coronary aneurysm formation has been associated posi-
tively with carotid arterial stiffness.84) Additionally, man-
nose-binding lectin,86) C-reactive protein,87) and tumour 
necrosis factor-α87) genotype polymorphisms have re-
cently been found to exert modulating effects on long-
term systemic arterial stiffness in Kawasaki patients. 

In another type of childhood vasculitis, polyarteritis 
nodosa, the recurrent inflammatory cycles result in 
multiple stages comprised of acute fibrinoid necrosis 
and healing fibrotic lesions. While the chronic pheno-
menon, with recurrent episodes of inflammatory ex-
acerbations, contrasts with the acute vasculitis in Kawa-

Table 2. Traditional cardiovascular risk factors associated with arterial stiffening in childhood

Risk factor Arteries involved Reference

Obesity  stiffness of abdominal aorta and carotid artery↑  46, 47, 48
Metabolic syndrome  brachial artery distensibility↓  49 

Heterozygous familial hypercholesterolaemia  stiffness of carotid artery and changes in aortic elastic properties↑  50, 51 

Increased total and low-density lipoprotein 
 cholesterol levels 

 brachial artery distensibility↓  52 

Type 1 diabetes 
 augmentation index (earlier wave reflection)↑  
 aortic and carotid↑ -radial pulse wave velocity 

53 

Offspring of parents with type 2 diabetes  augmentatio↑ n index (earlier wave reflection) 54, 55

Physical inactivity  aorto↑ -femoral and aorto-radial pulse wave velocities 56 
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saki disease, stiffening of the peripheral conduit arte-
rial stiffness and its amplification, during episodes of 
inflammatory exacerbation, are similarly found in poly-
arteritis nodosa.42) 

 
Vasculopathies 

Abnormalities of the arterial vasculature have been 
described in Marfan and Williams syndromes and in 
association with a bicuspid aortic valve. Marfan syn-
drome is caused by a mutation in the gene that encodes 
fibrillin-1,88) a matrix glycoprotein that is the principal 
constituent of microfibrils. On the other hand, haploin-
sufficiency of the elastin gene has been implicated in the 
arteriopathy of Williams syndrome.89) Increased aortic 
stiffness is well documented in patients with Marfan 
syndrome, as shown by the decreased distensibility and 
increased stiffness index,90-97) increased PWV,98) and de-
creased tissue Doppler-derived systolic and diastolic 
velocities of the aortic wall.99) Importantly, aortic stiffness 
has been shown to be an independent predictor of pro-
gressive aortic dilation100)101) and aortic dissection.101) Beta-
blocker therapy98) and angiotensin-converting enzyme 
inhibition102) appear to reduce aortic stiffness, which may, 
in turn, slow aortic dilation and delay aortic root re-
placement.102) Despite a biological basis for abnormal el-
astic fibres, results of studies exploring arterial elastic 
properties in patients with Williams syndrome are con-
troversial.103-106) In both children and adults,107) an iso-
lated bicuspid aortic valve is associated with progressive 
dilation of the ascending aorta and increased aortic 
stiffness.108)109) 

 
Congenital heart disease 

In a variety of congenital heart lesions, medial ab-
normalities with elastic fibre fragmentation have been 
identified in intraoperative biopsies and necropsy aor-
tic specimens.110) These congenital heart lesions include 
tetralogy of Fallot with or without pulmonary atresia, 
truncus arteriosus, complete transposition of the great 
arteries, coarctation of the aorta, double-outlet ventri-
cles, and univentricular hearts. 

In children and adolescents with tetralogy of Fallot, 
aortic stiffness has been shown to be increased and re-
lated to the aortic root dimensions.111) Additional data 

suggest that there is preferential stiffening of the cen-
tral, over peripheral, conduit arteries.112) Importantly, 
the heart-femoral PWV has been found to be a signifi-
cant size determinant of the sinotubular junction, sug-
gesting that central arterial stiffening may contribute 
to progressive aortic root dilation in these patients. 

In transposition of the great arteries, patients un-
dergoing two-stage anatomic correction were found to 
have decreased distensibility of the neoaorta, and this 
is thought to be related to pulmonary arterial band-
ing.113) Nonetheless, even after one-stage arterial switch 
operation, impaired distensibility of the neoaorta has 
similarly been documented.114) Recent studies docu-
mented an increased stiffness index of the carotid ar-
tery in patients both after atrial and arterial switch oper-
ations,115)116) suggesting that impaired elastogenesis may 
be an intrinsic component of this congenital anomaly. 

In the aortic segment proximal to the site of aortic 
coarctation, increase in collagen and decrease in smooth 
muscle content have been described.117) Functionally, 
distensibility of the aortic arch has been shown to be sig-
nificantly lower than that of the distal thoracic aorta.118) 
The importance of early coarctation repair on possible 
prevention of late vascular dysfunction is highlighted 
by the inverse relationships found between age at re-
pair and stiffness and vascular reactivitiy of the preco-
arctation arterial segments.118-120) Interestingly, the re-
sults of a recent study suggest that impaired elastic pro-
perties of the prestenotic aorta may be a primary abnor-
mality as evidenced by an increased ascending aortic 
stiffness index, even preoperatively, in neonates with co-
arctation.121) 

 
Systemic childhood diseases 

Apart from diseases of the heart and blood vessels, 
several chronic systemic diseases in childhood have been 
found to be associated with arterial stiffening (Table 
3).122-129) 

 
Functional Implications  
on Cardiac Performance 

 
Ventricular afterload is increased in the presence of 

systemic arterial stiffening. To generate the same stroke 

Table 3. Systemic childhood conditions associated with arterial stiffening

Risk factor Arteries involved Reference

Juvenile rheumatoid arthritis 
 pulse wave velocity and↑  
 distensibility of the aorta↓  

122 

Systemic lupus erythematosus  carotid arterial stiffness↑  123 

Chronic infection with human immunodeficiency virus  elastic modulus of the carotid arterial wall↑  124 

Chronic renal failure 
 carotid↑ -femoral pulse wave velocity and augmentation index 

(  carotid arterial stiffness even after renal transplantation)↑  
125, 126

Beta-thalassaemia major  st↑ iffness of the carotid artery, brachioradial artery, and aorta 127, 128

Primary snoring  brachioradial arterial stiffness↑  129 
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volume against a stiffened arterial tree, with increased 
afterload, the systemic ventricle has to generate a higher 
end-systolic pressure at the expense of greater myocar-
dial oxygen consumption.  

Structural adaptation of the left ventricle to increas-
ed afterload is also evident in the presence of arterial 
stiffening. In an otherwise healthy population of adults, 
measures of arterial stiffness including elastic modulus, 
distensibility, and PWV have been shown to be signifi-
cant determinants of left ventricular mass.130) 

Arterial stiffening is also associated with alteration 
of phasic coronary flow pattern.131)132) Early return of 
the reflected pressure wave, due to a faster PWV, aug-
ments central systolic pressure and lowers diastolic co-
ronary perfusion pressure. 

The increased myocardial oxygen consumption, left 
ventricular hypertrophy, and decreased diastolic coro-
nary perfusion pressure predispose the conditions of 
subendocardial ischemia and interstitial fibrosis, which 
in turn can impair myocardial relaxation and reduce 
ventricular compliance.133)134) Indeed, associations be-
tween arterial stiffness and left ventricular diastolic dys-
function in adults with hypertension134-137) and diabetes 
mellitus135)137)138) are recognized. Associations between 
arterial stiffening and left ventricular systolic function 
in adults with139) and without135) coronary artery disease 
have also been found. 

 
Clinical implications on management 

Early identification of arterial dysfunction in child-
hood may provide a window for early intervention. Am-
elioration of endothelial dysfunction may reduce arterial 
stiffness through the lowering of smooth muscle tone. 
The potential beneficial effects on endothelial function 
of folic acid in children with renal failure,140)141) anti-
oxidant vitamins and statins in those with familial hyper-
cholesterolemia,142-144) vitamin C in those with Kawasaki 
disease,145) and exercise training in obese children146)147) 
have been reported. In patients with Marfan syndrome, 
beta-blocker therapy98) and angiotensin-converting enzyme 
inhibition102) appear to reduce aortic stiffness. 

Lifestyle modification early in life may prevent prema-
ture stiffening of arteries. In this regard, there is evid-
ence to suggest a beneficial impact on arterial stiffness 
by sodium restriction,148) regular exercise,149) intake of fish 
oil150) and isoflavone,151) and smoking cessation.152) Lon-
gitudinal studies are, however, required to determine whe-
ther improvement of arterial function in the young will 
be translated into clinical benefits in adulthood. 

 
Conclusions 

With availability of noninvasive technologies for de-
termination of arterial stiffness in children, the signifi-
cance of the phenomenon of arterial stiffening in the 
young is becoming better understood. Importantly, even 

in children and adolescents, accumulating evidence sug-
gests that clinical conditions associated with abnormal 
functioning of the arterial system may have long-term 
clinical implications. Further studies to elucidate the 
underlying mechanisms of arterial stiffening in the young 
are warranted. Additionally, longitudinal studies are 
required to clarify whether systemic arterial stiffening 
tracks from child- to adulthood and whether early imple-
mentation of strategies to reduce arterial stiffness may 
have an impact on long-term cardiovascular health in 
both healthy and at-risk paediatric populations. 
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